
8-bit
Microcontrollers

Application Note

Rev. 2551A–AVR–11/03
AVR132: Using the Enhanced Watchdog Timer

Features
• Watchdog System Reset Source
• Parameter Backup Prior to Watchdog System Reset
• Wakeup Timer from all Sleep Modes
• Using the Watchdog for Both Wakeup and System Reset
• Handling the Watchdog Reset Flag
• Changing the Watchdog Configuration
• Flowcharts for Watchdog Operation
• Example Source Code

Introduction
“Well designed watchdog timers fire off every day, quietly saving systems and lives
without the esteem offered to human heroes.” - Jack Ganssle

No piece of software, save the very smallest, is free from bugs. The application could
get stuck in endless loops. Unexpected error codes could cause serious problems if
not handled correctly. Electrical noise or an unusual sequence of external events
could put the system in a state not thought of by the designers. All these cases could
potentially hang the system forever or cause serious damage to its surroundings.
Automatic handling and recovery of such cases is the job of a watchdog timer.

The Enhanced Watchdog Timer (WDT) runs independent of the rest of the system,
causing system resets whenever it times out. However, the application software
should ensure that the timeout never occurs by resetting the WDT periodically as long
as the software is in a known healthy state. If the system hangs or program execution
is corrupted, the WDT will not receive its periodic reset, and will eventually time out
and cause a system reset.

The WDT in all new AVR devices also has the ability to generate interrupts instead of
resetting the device. Since the WDT runs from its own independent clock, it can be
used to wake up the AVR from all sleep modes. This makes it an ideal wakeup timer,
easily combined with ordinary operation as a system reset source. The interrupt can
also be used to get an early warning of a upcoming Watchdog System Reset, so that
vital parameters can be backed up to non-volatile memory.

Theory When the Enhanced Watchdog Timer (WDT) period has expired, a WDT timeout
occurs. The timeout period is adjusted using a configurable prescaler, which divides the
WDT oscillator clock by a constant factor. Executing the WDR (Watchdog Reset)
instruction resets the timer value. The application software using the WDT must be
designed so that it executes the WDR instruction periodically whenever it decides that
the system still operates correctly. The timer value is automatically reset on system
reset and when disabling the WDT.

The Enhanced Watchdog Timer has three modes of operation. When operating in WDT
System Reset Mode, a WDT timeout causes a system reset. If WDT Interrupt Mode and
global interrupts are enabled, a WDT timeout sets the WDT Interrupt Flag and executes
the WDT Interrupt handler, instead of resetting the system. If both WDT System Reset
Mode and WDT Interrupt Mode are enabled, the first WDT timeout is handled as if only
WDT Interrupt Mode was enabled. Then WDT Interrupt Mode is disabled automatically
and the WDT is back in only WDT System Reset mode.

Figure 1 on page 3 shows what happens when a WDT timeout occurs. The dotted boxes
describe actions performed by the system. The solid lined boxes describe actions to be
performed by the application

When using the Enhanced Watchdog Timer it is important to know that if the Watchdog
Always On (WDTON) fuse is programmed, the only possible operation mode is WDT
System Reset Mode. This security feature prevents software from enabling the WDT
Interrupt Mode unintentionally, which could disable the WDT System Reset functionality.
When the WDTON fuse is unprogrammed, the WDT Interrupt Mode can be used as
described in this document.

As mentioned above, the WDT is independent from the rest of the system. It has its own
internal 128 kHz oscillator, which runs as long as one of the WDT operating modes is
enabled. This ensures safe operation even if the main CPU oscillator fails.

Even if the software designers never intended to use the WDT, it could be enabled unin-
tentionally, e.g. by a runaway pointer or brown-out condition. Therefore the startup code
should always check the Reset Flags and take appropriate action if a WDT System
Reset has occurred, even if the application does not use the WDT.

The various settings and functions can be combined to use the WDT for different pur-
poses. The most important setups are described in the following sections.
2 AVR 132 Application Note
2551A–AVR–11/03

AVR 132 Application Note
Figure 1. Event Sequence When a WDT Timeout Occurs

Using the WDT System
Reset Mode

Configuring the WDT to work as a system reset source only, is straightforward. Enable
the WDT System Reset Mode, set a reasonable timeout delay and off you go. If your ini-
tialization routines take longer than the WDT timeout period, they should execute the
WDR instruction at appropriate checkpoints during execution. If not, the code will never
reach its main loop before the WDT resets the system.

The timeout period must be chosen so that it is longer than the longest possible execu-
tion path through the main loop of your application. This includes expected interrupt
handlers as well. If your main loop is very large, several checkpoints could be inserted
inside the loop to allow a shorter timeout period.

Choosing the correct timeout period requires detailed knowledge of the timing charac-
teristics of your main loop. In many applications, the most robust approach could be to
choose a timeout period of several seconds. This will at least reset the system if it is
stuck in an infinite loop.

WDT timeout

WDT Interrupt Flag set

WDT Interrupt
Mode enabled ?

Global Interrupts
enabled ?

WDT Interrupt Flag
cleared

WDT System Reset

WDT Reset Flag set

Continue

Yes No

Yes

No

Execute WDT
Interrupt Handler

WDT System Reset
Mode enabled

WDT System
Reset Mode
enabled ?

WDT Interrupt Mode
disabled

Yes

No
3
2551A–AVR–11/03

Most embedded systems consist of some initialization code and a main loop. This con-
struction is also the most effective setup for use with a watchdog. An example for using
the WDT with such systems is shown in Figure 2.

Figure 2. Main loop when using the WDT System Reset Mode

Note that if the timeout period is chosen very tight, an unusual number of interrupts
could cause a WDT System Reset. This must be taken into consideration when choos-
ing the timeout period.

The ‘Everything ok ?’ check at the end of the loop is the part of the loop deciding
whether the application is operating correctly or not. One solution is to use flags that are
set in different parts of the main loop to indicate ‘good health’, or that vital parts of the
code have been visited. The final check tests all flags and resets the WDT and the flags
if everything is ok. If not, a timeout will eventually occur.

The initialization code should check the WDT Reset Flag and take appropriate actions.
This is covered in more detail in the “Startup considerations” section.

Everything ok ?
No

Yes

WDR

Initialization

Routine 1

Routine 2

Routine 3
Interrupt Handlers

STARTUP

WDR

Wait for
WDT System Reset
4 AVR 132 Application Note
2551A–AVR–11/03

AVR 132 Application Note
Parameter Backup Prior
to WDT System Reset

The method described in the previous section does not give any warning of a coming
WDT System Reset. The application has no means of handling a timeout in software
before the system reset occurs. However, by using the WDT Interrupt Mode, the appli-
cation can use the WDT Interrupt handler for backing up vital parameters before the
actual reset.

By enabling both WDT System Reset Mode and WDT Interrupt Mode, the first timeout
will disable the WDT Interrupt Mode and run the interrupt handler. The second timeout
then causes a system reset. The interrupt handler then has one timeout period for back-
ing up parameters, for example, to EEPROM. The sequence of events is shown in
Figure 3. The dotted boxes describe actions performed by the system. The solid lined
boxes describe actions to be performed by the application

Figure 3. Parameter Backup Prior to WDT System Reset

The Write Complete Flag could be a byte in EEPROM indicating whether the backup
operation was finished before the system reset. This flag is checked in the startup code
if the WDT Reset Flag is set, and the backed up parameters can be used for restoring
system state or debugging purposes. The flag should be cleared during initialization to
invalidate the parameters if other types of resets occur.

Note that there is no guarantee that the interrupt handler is executed prior to a WDT
System Reset. If interrupts are disabled too long, the interrupt handler will never execute
before the second timeout. Runaway pointers or electrical noise could also unintention-
ally disable the WDT Interrupt Mode. Therefore the Write Complete Flag is our means of
knowing if the stored parameters are valid or not.

The infinite loop at the end of the interrupt handler prevents the main code from poten-
tially causing more damage.

Backup vital
parameters

1st WDT timeout

WDT Interrupt Mode
disabled

2nd WDT timeout

WDT System Reset

STARTUP

Set Write Complete
Flag

Infinite loop

WDT Reset Flag set

WDT System Reset
Mode enabled
5
2551A–AVR–11/03

Using the WDT Interrupt
Mode

As described above, the WDT has its own internal oscillator running independently from
the main CPU clock. This makes it possible to use the WDT Interrupt as a wakeup
source from all sleep modes. By enabling only the WDT Interrupt Mode, a timeout will
generate an interrupt request, but not cause any system resets on further timeouts.

Having a wakeup source without running the main CPU clock is an excellent way of sav-
ing power. Using power-down sleep mode with the WDT as a wakeup source draws
approx 3mA when running at 3V supply voltage. An example on how to use the WDT as
a wakeup source is shown in Figure 4.

Figure 4. Using the WDT as a Wakeup Timer

If periodic wakeups are preferred, the disabling of the WDT Interrupt Mode can be left
out. The WDT will then generate an interrupt on every timeout, waking up the CPU if it is
in sleep mode.

Note that the WDT System Reset Mode must not be enabled when using the WDT
solely as a wakeup timer. If it is enabled, a system reset will occur on the next timeout.
Using the WDT both as a wakeup timer and system reset source is described in the fol-
lowing section.

Ready to sleep

Enable sleep mode if
not already enabled

Enable interrupts if not
already enabled

Enable WDT Interrupt
Mode

SLEEP

WDT timeout wakeup

Disable WDT Interrupt
Mode

Continue

Set WDT timeout
period
6 AVR 132 Application Note
2551A–AVR–11/03

AVR 132 Application Note
Using the WDT in
Combined Operation

It is also possible to set up the WDT to work as a wakeup timer when entering sleep
mode, and switch to WDT System Reset operation when back in active mode. With this
setup there is no need for disabling the WDT Interrupt Mode, as it is automatically dis-
abled by the hardware. To use the WDT as a periodic wakeup source, the application
therefore has to enable the WDT Interrupt Mode prior to entering sleep mode every
time.

Re-enabling the WDT Interrupt Mode inside the interrupt handler is not recommended,
as it could cause the WDT to get stuck in WDT Interrupt Mode, if some parts of the code
fail.

When the CPU is back in active mode, the WDR instruction is used for resetting the
WDT inside the main loop as described earlier. With WDT Interrupt Mode disabled, the
WDT functions just as it did without the wakeup functionality.

If timeout warning prior to system reset is needed for parameter backup etc., the WDT
Interrupt handler needs some slight changes. The interrupt handler must use a flag to
decide whether it should serve a wakeup interrupt or a timeout warning interrupt. An
example interrupt handler is shown in Figure 5.

Figure 5. Dual purpose WDT Interrupt Handler

Note that the wakeup flag must be set manually prior to entering sleep mode to ensure
that the correct part of the handler is executed on wakeup. The WDT Interrupt Mode
must be re-enabled outside the interrupt handler after serving the wakeup interrupt.

The right branch of the flowchart is described in the section on parameter backup.

Startup Considerations When designing for devices having the Enhanced Watchdog Timer, it is important to
evaluate the WDT Reset Flag in the startup code. This applies even if the application
never intends to use the WDT. If the WDT System Reset Mode should unintentionally
be enabled and cause a system reset, the WDT Reset Flag will be set and the WDT
System Reset Mode is kept enabled after the system reset. Therefore the startup code
should check the WDT Reset Flag and disable the WDT System Reset Mode if it is
enabled but never used. These considerations apply when the WDTON fuse is unpro-

Backup vital
parameters

WDT Interrupt Handler

WDT Interrupt Mode
disabled

Set Write Complete
Flag

Infinite loop

Wakeup Flag
set ?

Clear Wakeup Flag

Return

NoYes

Re-enable WDT
Interrupt Mode

SLEEP

Set Wakeup Flag

Continue

Section from main code
where entering sleep
7
2551A–AVR–11/03

grammed only. If the WDTON fuse is programmed, the WDT System Reset Mode is
always enabled. How to change the fuse settings is described in the device datasheets.

If the WDT is intentionally used in the application and a system reset occurs, the startup
code should have a scheme for handling the WDT Reset Flag. The easiest solution is to
just ignore the flag and continue as usual. This approach saves the system from bugs
appearing occasionally, but has no way of handling repeated or persistent errors.

A possible extension is to keep a WDT system reset counter in non-volatile memory.
The startup code should then shut down the system safely and notify the operator if this
counter exceeds a predefined limit. Using some sort of system clock tick (backed up in
non-volatile memory), the startup code can also try to detect repeated resets over a
fixed period of time.

If parameter backup is used, the startup code should check the Write Complete flag
described in the Parameter Backup section and try to restore the system to a safe state,
or at least be able to supply some debugging information to the operator.

Changing the WDT
Configuration

To prevent accidental changes to the WDT configuration, special timed sequences are
needed to disable WDT System Reset Mode or change the timeout period.

To disable the WDT System Reset Mode, the Watchdog Change Enable bit must be set
within four CPU clock cycles prior to the disabling. If not, the WDT System Reset Mode
will stay enabled. If the WDTON fuse is programmed the WDT System Reset Mode is
always enabled.

To change the timeout period, the Watchdog Change Enable bit must be set within four
CPU clock cycles prior to changing the timeout value. It is however not recommended to
change the timeout period during normal operation. This should be done once in the ini-
tialization code.

If the WDTON fuse is unprogrammed on ATtiny13 and ATtiny2313, it is possible to
change the WDT timeout period without following the timed sequence.

Changing the WDT Interrupt Mode setting or enabling the WDT System Reset Mode
needs no special considerations.

Interrupts should be disabled when changing the configuration. This ensures that no
interrupts occur, causing the 4-cycle limit to expire.

Flowcharts for changing the WDT configuration are shown in Figure 6.
8 AVR 132 Application Note
2551A–AVR–11/03

AVR 132 Application Note
Figure 6. Timed Sequences for Changing the WDT Configuration

Implementation This application note provides three code examples written in C. They are all designed
for the ATtiny13 device placed on the STK500 development board or similar. The ports
PB0 and PB1 are connected to a ready-LED and a failure-LED respectively, and PB2,
PB3 and PB4 are connected to three of the STK500 switches. Note that driving an out-
put low turns on a LED, and pressing a button drives the corresponding input low. The
setup is shown in Figure 7.

Figure 7. Circuit Diagram for Application Example

The examples demonstrate the following concepts:

• Using the WDT as a system reset source

• Using the WDT as a Wakeup Timer

• Using the WDT as a combined Wakeup Timer and system reset source with
parameter backup

Note: The WDTON fuse must be unprogrammed when running the examples using the WDT
Interrupt Mode.

Disable WDT System Reset
Mode

Disable interrupts

Set Watchdog
Change Enable bit

Clear WDT System
Reset Enable bit within

4 cycles

Enable interrupts

Continue

Change WDT timeout period

Disable interrupts

Set Watchdog
Change Enable bit

Change WDT Prescaler
settings within 4 cycles

Enable interrupts

Continue

ATtiny13

VCC

GND

PB0

PB1

PB2

PB3

PB4

~RESET

Ready

Failure

Command1

Command2

Command3

Reset
9
2551A–AVR–11/03

Using the WDT as a
System Reset Source

This example implements the structure described in “Figure 2. Main loop when using the
WDT System Reset Mode.”, with an initialization routine and a main loop with three rou-
tines and a health check at the end. Each routine has its own health flag to indicate that
everything is ok. The three routines get a command, parse and execute it, respectively.

Initialization The initialization routine has two main purposes: initializing peripherals and handling
reset flags. Its flowchart is shown in Figure 8 on page 10. The parts inside the dashed
frames are only used in the Combined Operation code example and are described later.

Figure 8. Initialization Routine When Using the WDT as a System Reset Source

A ny res e t
f lags s e t ?

I n it ia liza t ion

S av e MC U s ta tus reg is te r
and c lear res e t f lags

E nab le W atc hdog
In te rrup t Mode

In f in it e loop wa it ing f o r
W D T S y s tem R es e t

No

Y es

W D T R es e t
F lag s e t ?

Y es

No Inc rem ent W atc hdog
R es et c oun te r

W rit e
C om ple te F lag

s e t ?

Y es

No
R es to re param eter

and c lear W rite
C om ple te F lag

R es e t
c oun t lim it
ex c eeded?

Y es

No R eturn wit h e rro r c ode

P ower-up
or E x t . R es e t

F lag s e t ?

C lear W atc hdog
R es et c oun te r

Y es

No

R eturn

E nab le W D T S y s tem R es e t
Mode and s e t t im eout period

O n ly when us ing
P aram eter B ac k up

O nly when us ing
P aram eter

B ac k up
10 AVR 132 Application Note
2551A–AVR–11/03

AVR 132 Application Note
The first conditional branch handles the case where no reset flags are set upon startup.
Since the reset flags are always cleared in the initialization routine, this only happens
when runaway code wraps back to address 0 and runs the startup code once again
without a reset. This clearly indicates a bug or fault in software and is handled like a
WDT System Reset. The initialization routine just enters an infinite loop and waits for the
WDT to reset the device properly.

The code then checks the WDT Reset Flag. If it is set, the routine increments the WDT
Reset counter and checks it against a predefined limit. If this limit is exceeded, the appli-
cation assumes that there is a permanent repeating error and indicates this by turning
on the failure indicator LED and halting execution. By entering an infinite loop with a
WDR instruction inside, execution is effectively halted until an external reset occurs.

Power-up or external reset events are considered to be manual intervention and the
WDT Reset counter is cleared. This makes it possible for a human operator to manually
reset an application that has been halted by too many WDT System Resets. The opera-
tor must of course try to find the source of the WDT System Resets before resetting.
Blindly resetting and hoping for things to fix themselves is not a recommended solu-
tion.The rest of the flowchart should be self-explanatory.

Communicate Command The routine that gets a command is an example of a poorly designed communication
routine. It flashes a LED 10 times and then waits for any button to be pressed. The prob-
lem arises when the user waits too long. A robust design should implement some sort of
timeout check and return with an error code if the communication times out. However,
this routine does not, and the WDT will reset the device if no button is pressed within the
WDT timeout period. The flowchart for the communication routine is shown in Figure 9.

Figure 9. Flash LED and Wait for User to Press Some Buttons

If a command button is pressed in time, the routine sets its health flag and returns the
button press bit pattern.

Any buttons
pressed ?

Communicate()

Flash LED 10 times

No

Yes

Save button bits

Turn off LED and wait
a number of cycles

Set health flag for
this routine

Return button bits

Potential WDT timeout here if
user waits too long before
pressing a command button
11
2551A–AVR–11/03

Parse Command The command parser uses the switch keyword in C to convert the button press bit pat-
tern to a command code. The pattern is compared against the bit masks for each of the
command buttons. When a match is found, the command code is set accordingly and
the health flag for this routine is set.

The flowchart for the parser is shown in Figure 10.

Figure 10. Converting the Button Press Pattern to a Command Code

Note that if two or more command buttons are pressed simultaneously, the parser will
never find a match and its health flag is never set. Because if this, the health check in
the main loop will not reset the WDT, and a system reset could occur if the main loop is
not executed successfully and quickly enough a second time. This is an example show-
ing that unexpected inputs may cause problems if not handled by a default case in the
switch block.

Execute Command In this routine, the command code decides which action to perform.

Command 1 has no particular action, but it keeps the main loop running healthy by
being a valid command. The other commands demonstrate various bugs that could
occur in real life applications.

Command 2 enables the EEPROM Ready Interrupt. This interrupt is executed continu-
ously as long as the EEPROM module is ready, which means always in this case, since
the EEPROM is never used after the initialization routine. The EEPROM Ready Interrupt
executing over and over slows down the main loop considerably, and a WDT System
Reset will eventually occur. Command 2 is therefore an example showing how too many
or poorly configured interrupts may slow down the main loop too much.

Button
bits matches

Button1 ?

Parse()

No

Set command code to
1 and set health f lag

f or this routine

Yes

Button
bits matches

Button2 ?

Set command code to
2 and set health f lag

f or this routine

Button
bits matches

Button3 ?

Set command code to
3 and set health f lag

f or this routine

No

Yes

No

Yes

Return command code
12 AVR 132 Application Note
2551A–AVR–11/03

AVR 132 Application Note
Command 3 gives an example of runaway code. This example just calls a function at an
unused address. The program counter runs to the end of program memory and wraps
back to address 0. No reset flags will be set and the fault is caught safely in the initializa-
tion routine.

To s imulate the bad funct ion cal l , the fo l lowing code f ragment is used:
“((void(*)()) 0x1FF)();“ The integer 0x1FF is converted to a pointer-to-a-function, and the
function is called. Refer to the ANSI C standard for more details on function pointers and
type conversions.

Using the WDT as a Wakeup
Timer

This example only uses the WDT Interrupt Mode, and the initialization routine is thus
quite reduced. As described earlier it is important to disable the WDT System Reset
Mode upon startup even if the WDT System Reset Mode is never used. The initialization
routine is shown in Figure 11.

Figure 11. Initialization Routine When Using the WDT as Wakeup Timer

The main loop of this example flashes the LED connected to PB0 10 times to show that
it is awake. It then resets the WDT, enables the WDT Interrupt Mode and enters sleep
mode. When the WDT times out, it wakes up the CPU again. The interrupt handler dis-
ables WDT Interrupt Mode, so that no unneccessary interrupts are generated if the main
loop runs long before entering sleep mode once again.

Combined Operation The third example shows how to use the WDT both as a Wakeup Timer and system
reset source with parameter backup. It is an extended version of the first code example,
now using Command 1 to enter sleep mode.

In this example, the initialization routine includes the parts shown in dashed frames in
the flowchart. This means that the WDT Interrupt Mode is enabled and backed up
parameters are restored if the Write Complete flag is set upon startup.

The parameter to be backed up is the value of the Timer/Counter1. It has no particular
function in this application, but serves as an example of a parameter that is cleared on
reset and needs to be restored.

Initialization

Disable WDT
Sy stem Reset Mode

Set WDT timeout
period

Set Sleep Mode

Return

Enable WDT
Interrupt Mode
13
2551A–AVR–11/03

The WDT Interrupt handler is implemented as described in Figure 5 on page 7. The
Sleep Enable bit is used as a Wakeup flag. When Command 1 is executed, the applica-
tion resets the WDT, sets the Sleep Enable bit and then enters sleep mode. The
interrupt handler is executed when the WDT timeout wakes up the CPU, and the
Wakeup flag decides what action to take. If it is already cleared, an error has occurred
and the failure LED is lit. The rest of the interrupt handler implementation complies with
the flowchart.

The rest of the code is the same as described in the first example.

Literature References Michael Barr – Introduction to Watchdog Timers
http://www.embedded.com/story/OEG20010920S0064

Niall Murphy – Watchdog Timers
http://www.embedded.com/2000/0011/0011feat4.htm

Jack Ganssle – Born to Fail
http://www.embedded.com/design_library/OEG20021211S0032

Kernighan & Ritchie – “The C Programming Language”, 2nd edition.
14 AVR 132 Application Note
2551A–AVR–11/03

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof AVR® and megaAVR® are the registered trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.
 Printed on recycled paper.

2551A–AVR–11/03

	Features
	Introduction
	Theory
	Using the WDT System Reset Mode
	Parameter Backup Prior to WDT System Reset
	Using the WDT Interrupt Mode
	Using the WDT in Combined Operation
	Startup Considerations
	Changing the WDT Configuration

	Implementation
	Using the WDT as a System Reset Source
	Initialization
	Communicate Command
	Parse Command
	Execute Command
	Using the WDT as a Wakeup Timer

	Combined Operation

	Literature References

