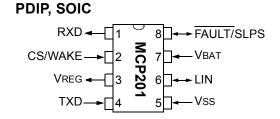

MCP201

LIN Transceiver with Voltage Regulator


Features

- · Support Baud Rates up to 20 kbaud
- · 40V load dump protected
- Wide supply voltage, 6.0 18.0V, continuous
- Maximum input voltage of 30V
- Extended Temperature Range: -40 to +125°C
- Interface to standard USARTs
- Compatible with LIN Spec 1.3
- Local Interconnect Network (LIN) Line pin:
 - Internal pull-up resistor and diode
 - Protected against ground shorts (LIN pin to ground)
 - Protected against LIN pin loss of ground
 - High current drive, 40 mA \leq IoL \leq 200 mA
- · Automatic thermal shutdown
- On-board Voltage Regulator:
 - Output voltage of 5V with ±5% tolerances over temperature range
 - Maximum output current of 50 mA
 - Able to drive an external series-pass transistor for increased current supply capability
 - Internal thermal overload protection
 - Internal short-circuit current limit
 - External components limited to filter cap only

Block Diagram

Package Types

NOTES:

1.0 DEVICE OVERVIEW

The MCP201 provides a physical interface between a microcontroller and a LIN half-duplex bus. It is intended for automotive and industrial applications with serial bus speeds up to 20 kbaud.

The MCP201 provides a half-duplex, bidirectional communications interface between a microcontroller and the serial network bus. This device will translate the CMOS/TTL logics levels to LIN level logic, and vice versa.

The LIN specification 1.3 requires that the transceiver of all nodes in the system be connected via the LIN pin, referenced to ground and with a maximum external termination resistance of 510 Ω from LIN bus to battery (510 Ω is the maximum load of the LIN bus, which corresponds to one Master and 16 Slave nodes).

The MCP201 provides a +5V 50 mA regulated power supply. This function is short-circuit-protected and it can generate a thermal shutdown. The regulator has been specifically designed to operate in the automotive environment and will survive reverse battery connections, +40V load dump transients, and double-battery jumps (see Section 1.6, "Internal Voltage Regulator").

1.1 Optional External Protection

1.1.1 TRANSIENT VOLTAGE PROTECTION (LOAD DUMP)

An external 30V zener diode, between VBAT and ground, with a 50 Ω resistor in series with the battery supply and the VBAT pin serve to protect the device from

power transients (see Figure 1-2). This protection is optional, but should be considered as good engineering practice.

1.1.2 REVERSE BATTERY PROTECTION

An external reverse battery blocking diode can be used to provide polarity protection (see Figure 1-2). This protection is optional, but should be considered as good engineering practice.

1.2 Internal Protection

1.2.1 ESD PROTECTION

This device meets IEC 1000-4-2:1995 specifications.

1.2.2 GROUND LOSS PROTECTION

The LIN bus specification states that an inactive node must assume the recessive state. Therefore, loss of ground effectively forces the LIN line to a hi-impedance level.

1.2.3 THERMAL PROTECTION

The thermal protection circuit monitors the die temperature and is able to shut down the LIN transmitter and voltage regulator. Refer to Table 1-1 for details.

There are two sources for a thermal overload. One is the voltage regulator, which can have an output overload. The other is the LIN transmitter with a short-circuit to VBAT. Checking the TXD and RXD states make it possible to determine the thermal excursion source and to shut it down.

Voltage LIN Transmitter⁽¹⁾ TXD RXD Comments Regulator⁽²⁾ ok ok Normal function х х output overload L L output overload LIN transmitter and regulator shutdown н L short circuit ok LIN transmitter shutdown Н H/L output overload ok Regulator shutdown

 TABLE 1-1:
 SOURCES OF THERMAL OVERLOAD

Legend: x = Don't care, L = Low, H = High

Note 1: LIN transceiver overload current on the LIN pin is > 200 mA.

2: Voltage regulator overload current on VREG is > 50 mA.

1.3 Modes of Operation

For an overview of all operational modes, please refer to Table 1-2.

1.3.1 POWER-DOWN MODE

In the Power-Down mode, the transmitter and the voltage regulator are both off. Only the receiver section and the CS/WAKE pin wake-up circuits are in operation. This is the lowest power mode.

If any bus activity (e.g., a BREAK character) should occur during Power-Down mode, the device will immediately enable the voltage regulator. Once the output has stabilized, enter the Ready mode.

The part will enter the operation mode if the CS/WAKE pin should become active-high ('1').

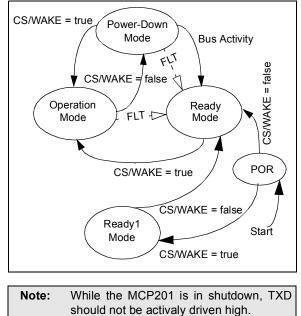
1.3.2 READY MODE AND READY1 MODE

There are two states for the Ready mode. The only difference between these states is the transition during start-up of the regulator, depending on the signal CS/ WAKE. The state Ready1 mode ensures that the transition from the Ready-to-Operation mode (once an active edge of CS/WAKE) occurs.

Upon entering the Ready mode, the voltage regulator is powered up. If a microcontroller is being driven by the voltage regulator output, it will go through a poweron reset and initialization sequence. All other circuits, other than the transmitter, are fully operational. The LIN pin is held in the recessive state.

The device will stay in the Ready mode until the CS/WAKE pin goes high ('1'). After CS/WAKE is active, the transmitter is enabled and the part enters the Operation mode.

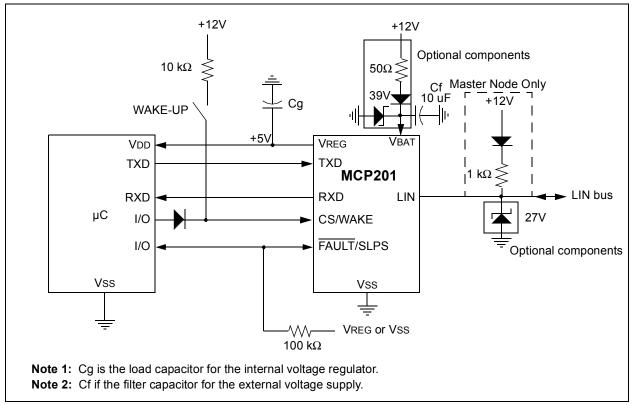
The part may only enter the Power-Down mode after going through an Operation mode step.


On power-on of the VBAT supply pin, the component is in either in Ready or Ready1 mode, waiting for a CS/WAKE rising edge.

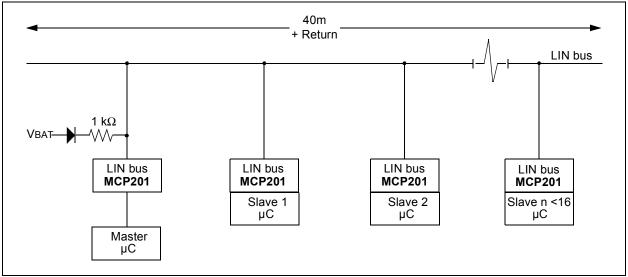
1.3.3 OPERATION MODE

In this mode, all internal modules are operational.

The MCP201 will go into the Power-down mode on the falling edge of CS/WAKE.



State	Transmitter	Voltage Regulator	Operation	Comments
POR	OFF	OFF	Read CS/WAKE, if LOW then READY, if HIGH READY1 mode	Sample FAULT/SLPS and select slope
READY	OFF	ON	If CS/WAKE rising edge, then Operation mode	Bus Off state
READY1	OFF	ON	If CS/WAKE falling edge, then READY mode	Bus Off state
OPERATION	ON	ON	If CS/WAKE falling edge, then Power down	Normal Operation mode
POWER- DOWN	OFF	OFF	On LIN bus falling, go to READY mode. On CS/WAKE rising edge, go to Operational mode	Low Power mode


TABLE 1-2: OVERVIEW OF OPERATIONAL MODES

1.4 Typical Applications

1.5 Pin Descriptions

Bondnad	Dev	ices	Function
Bondpad Name	8-Pin PDIP	8-Pin SOIC	Normal Operation
RXD	1	1	Receive Data Output
CS/WAKE	2	2	Chip Select (TTL-HV)
VREG	3	3	Power Output
TXD	4	4	Transmit Data Input (TTL)
Vss	5	5	Ground
LIN	6	6	LIN bus (bidirectional- HV)
VBAT	7	7	Battery
FAULT/SLPS	8	8	Fault Detect Output, Slope Select Input
Total	8	8	

TABLE 1-3:MCP201 PINOUT OVERVIEW

Legend: TTL = TTL input buffer, HV = High Voltage (VBAT)

1.5.1 POWER OUTPUT (VREG)

Positive Supply Voltage Regulator Output pin. The voltage output from the regulator also supplies power to internal logic.

1.5.2 GROUND (Vss)

Ground pin.

1.5.3 BATTERY (VBAT)

Battery Positive Supply Voltage pin. This pin is also the input for the internal voltage regulator.

1.5.4 TRANSMIT DATA INPUT (TXD)

Transmit Data Input pin. This pin has an internal pull-up to VREG. The LIN pin is low (dominant) when TXD is low, and high (recessive) when TXD is high.

1.5.5 RECEIVE DATA OUTPUT (RXD)

Receive Data Output pin. This pin is a standard CMOS output, and follows the state of the LIN pin.

1.5.6 LIN

Bidirectional LIN bus Interface pin.

1.5.6.1 LIN Transmitter

The LIN Transmitter is the driver unit for the LIN pin and is controlled by the signal TXD. It has an open collector output with a current limitation. To reduce EMI, the edges during the signal changes are slope controlled.

In case the thermal protection detects an over-temperature condition while the signal TXD is LOW, the transmitter is shutdown. The recovery from the thermal shutdown is equal to adequate cooling time.

1.5.6.2 LIN Receiver

The LIN Receiver monitors the state of the LIN pin and generates the output signal RXD.

1.5.6.3 CS/WAKE

Chip Select Input pin. When CS = 'l', the transmitter and the voltage regulator are both enabled.

If CS/WAKE = '0', the device is in Ready mode on power-up or in Low Power mode. In Low Power mode, the voltage regulator is shutdown and the transmitter driver is enabled. The internal pull-down resistor will keep the CS/WAKE pin low. This is done to ensure that no disruptive data will be presented on the bus while the microcontroller is executing a Power-on Reset and I/O initialization sequence.

The internal pull-down resistor will keep the input low. An external switch (or other source) can then wake up both the transceiver and the microcontroller. An external-blocking diode and current-imiting resistor are necessary to protect the microcontroller I/O pin (see Figure 1-2).

Note: On POR, the MCP201 enters Ready or Ready1 mode (see Figure 1-1). In order to enter Operational mode, the MCP201 has to see one rising edge on CS.

1.5.7 FAULT/SLPS

FAULT Detect Output, Slope Select Input.

This pin is usually in Output mode. Its state is defined as shown in Table 1-5.

The state of this pin is internally sampled during poweron of VBAT. Once VBAT has reached a stable level (approx. 6 VDC) and VREG is stable at 4.75-5.25 VDC, the state of this pin selects which slew rate profile to apply to the LIN output. It is only during this time that the pin is used as an input (the output driver is off during this time). The slope will stay selected until the next VBAT power-off/power-on sequence, regardless of any power-down, wake-up or SLEEP events. <u>Only a VBAT</u> rising state will cause a sampling of the FAULT/SLPS pin. The Slope selection will be made irrespective of the state of any other pin.

The FAULT/SLPS pin is connected to either VREG or Vss through a (approx. 100 k Ω) resistor to make the slope selection. This large resistance allows the FAULT indication function to overdrive the resistor in normal operation mode.

If the FAULT/SLPS is high ('1'), the normal slope shaping is selected (dv/dt = 2 V/ μ s). If FAULT/SLPS is low ('0') during this time, the alternate slope shaping is selected (dv/dt = 4 V/ μ s)

TABLE 1-4: FAULT/SLPS SLOPE SELECTION DURING POR

FAULT/SLPS	Slope Shaping				
Н	Normal				
L	Alternate ⁽¹⁾				

Note 1: This mode does not conform to LIN bus specification Ver. 1.3.

here a shake she at a she and a with a more at a construction in the
have detected a short or thermal excursion
and have disabled the LIN output driver.

Note: Every time TX is toggled, a Fault condition will occur for the length of time, depending on the bus load. The Fault time is equal to the propagation delay.

TXD In	RXD Out	LIN bus I/O	Thermal Override	FAULT/SLPS Out	Comments
L	Н	VBAT	OFF	L	Bus shorted to battery
Н	Н	VBAT	OFF	Н	Bus recessive
L	L	GND	OFF	Н	Bus dominant
Н	L	GND	OFF	L	Bus shorted to ground
х	х	VBAT	ON	L	Thermal excursion

TABLE 1-5: FAULT/SLPS TRUTH TABLE

Legend: x = don't care

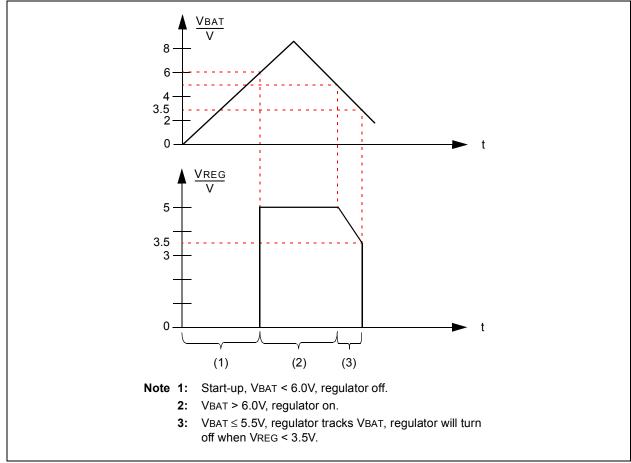
1.6 Internal Voltage Regulator

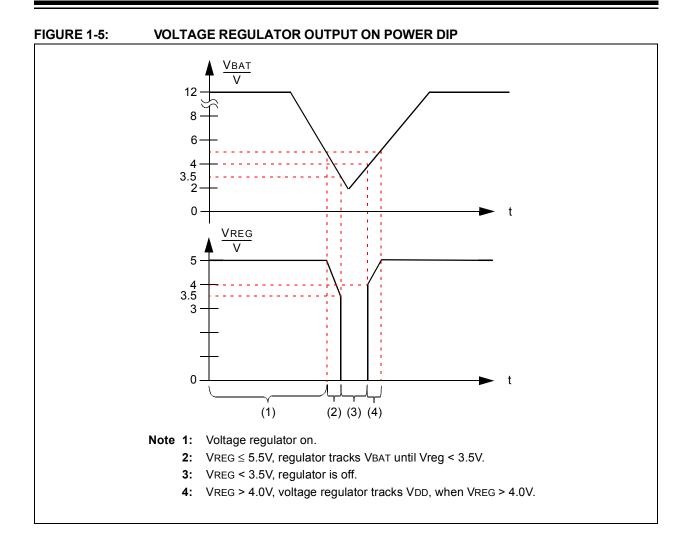
The MCP201 has a low drop-out voltage, positive regulator capable of supplying $5.00 \text{ VDC } \pm 5\%$, at up to 50 mA of load current over the entire operating temperature range. With a load current of 50 mA, the minimum input-to output voltage differential required for the output to remain in regulation is typically +0.5V (+1Vmaximum over the full operating temperature range). Quiescent current is less than 1.0 mA, with a full 50 mA load current, when the input-to-output voltage differential is greater than +2V.

The regulator requires an external output bypass capacitor for stability.

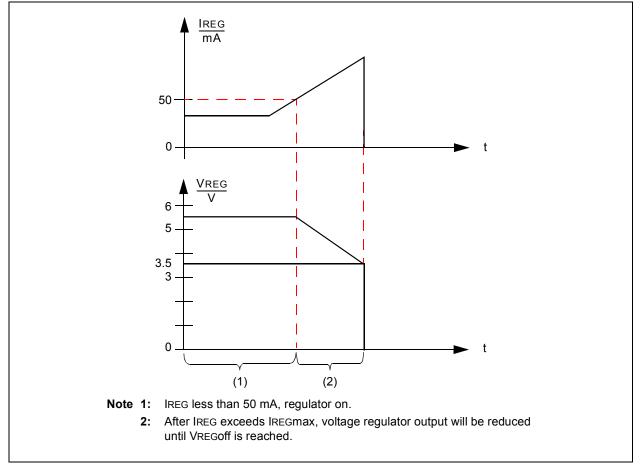
Designed for automotive applications, the regulator will protect itself, any load from reverse battery connections, double-battery jumps and up to +40V load dump transients. The voltage regulator has both short-circuit and thermal shutdown protection built-in.

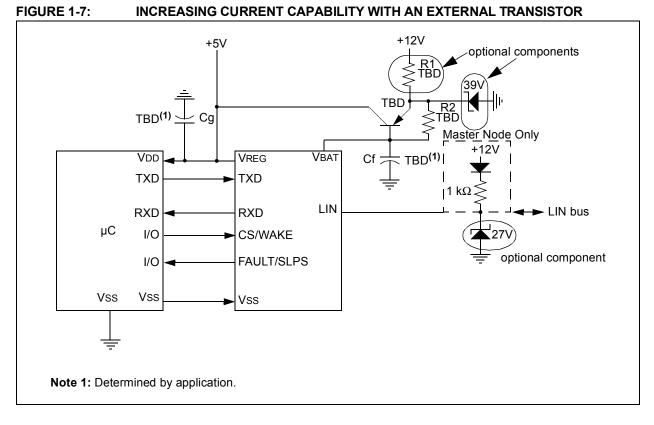
Regarding the correlation between VBAT, VREG and IDD, please refer to Figure 1-4 through Figure 1-7. When the input voltage (VBAT) drops below the differential needed to provide stable regulation, the


output VREG will track the input down to approximately 4V, at which point the regulator will turn off. This will allow microcontrollers with internal POR circuits to generate a clean arming of the Power-on Reset trip point. The regulator output will stay off until VBAT is above, approximately, 6V.


In the start phase, VBAT must be at least 6.0V (Figure 1-4) to initiate operation during power-up. In Power-down mode, the VBAT monitor will be turned off.

The regulator has a thermal shutdown. If the thermal protection circuit detects an over-temperature condition caused by an over-current condition (Figure 1-7) of the regulator, it will shutdown.


The regulator has an overload current limiting. During a short-circuit, VREG is monitored. If VREG is lower than 3.5V, the regulator will turn off. After a thermal recovery time, the VREG will be checked again. If there is no short-circuit (VREG > 3.5V), the regulator will be switched back on.



1.6.1 INCREASED CURRENT CAPABILITY

In order to support applications requiring more than 50 mA, the regulator will support the addition of an external series pass transistor in a current-sharing configuration, as shown in Figure 1-7.

uration, as shown in Figure 1-7.

NOTES:

2.0 ELECTRICAL CHARACTERISTICS

2.1 Absolute Maximum Ratings†

VIN DC Voltage on Logic pins except CS/WAKE	0.3 to VREG+0.3V
VIN DC Voltage on CS/WAKE	0.3 to VBAT+0.3V
VBAT Battery Voltage, non-operating (LIN bus recessive, no regulator load, t<60s)	0.3 to +40V
VBAT Battery Voltage, transient (Note 1)	0.3 to +40V
VBAT Battery Voltage, continuous	0.3 to +30V
VLBUS Bus Voltage, continuous	18 to +30V
VLBUS Bus Voltage, transient (Note 1)	27 to +40V
ILBUS Bus Short Circuit Current Limit	200 mA
ESD protection on all pins (Human Body Model)	>2 kV
ESD protection on all pins (Machine Model)	>200V
Maximum Junction Temperature	150°C
Storage Temperature	55 to +150°C
Note 1: ISO 7637/1 load dump compliant (t < 500 ms).	

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2.2 DC Specifications

DC Specif	ications	Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VBAT = $6.0V$ to $18.0V$ TAMB = $-40^{\circ}C$ to $+125^{\circ}C$ CLOADREG = $1 \mu F$				
Symbol	Parameter	Min	Typic al	Мах	Units	Conditions
Ibatq	Power VBAT Quiescent Operating Current	_	0.45	1.0	mA	IVREG=0 mA, LIN bus pin recessive, (Note 3)
Ibat Iddq	VBAT Power-Down Current VREG Quiescent Operating Current	_	23 500	50 —	μA mA	(Note 2)
Vін	Microcontroller Interface High-Level Input Voltage (TXD, FAULT/SLPS)	2.0	_	VREG + 0.3	V	
VIL	Low-Level Input Voltage (TXD, FAULT/SLPS)	-0.3	_	0.15 x VREG	V	
Iihtxd	High-Level Output Current (TXD)	-90	—	+30	μA	Input voltage = 4V
Iiltxd	Low-Level Output Current (TXD)	-150	_	-10	μA	Input voltage = 1V (though >50 kΩ internal pull-up)
VIHCS/ WAKE	High-Level Input Voltage (CS/WAKE)	3.0	—	VBAT	V	Through an external current-limiting resistor (10 k Ω)
VILCS/ WAKE	Low-Level Input Voltage (CS/WAKE)	-0.3	—	1.0	V	
IIHCS/ WAKE	High-Level Input Current (CS/WAKE)	-10	—	+80	μA	Input voltage = 4 V (though >100 kΩ internal pull-up)
IILCS/ WAKE	Low-Level Input Current (CS/WAKE)	5	—	30	μA	Input voltage = 1V
Vohrxd	High-Level Output Voltage (RXD)	0.8 VREG	—	—		Юн = -4 mA
Volrxd	Low-Level Output Voltage (RXD)	_	—	0.2 VREG		IOL = 4 mA
VIHLBUS	Bus Interface High-Level Input Voltage (LBUS)	0.6 VBAT	_	18	V	Recessive state
VILLBUS	Low-Level Input Voltage (LBUS)	-8	—	0.4 Vbat	V	Dominant state
VHYS	Input Hysteresis	0.05 VBAT	—	0.1 Vbat	V	VIH - VIL
IOL	Low-Level Output Current (LBUS)	40	_	200	mA	Output voltage = 0.1 VBAT, VBAT = 12 V
lo	High-Level Output Current (LBUS)	-20	_	20	μA	VBUS >= VBAT, VLBUS < 40V
lΡ	Pull-up Current on Input (LBUS)	-180	—	-60	μA	Approx 30 k Ω internal pull-up @ VIH = 0.7 VBAT

Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0Ω , TX = 0.4 VREG, VLBUS = VBAT).

2: For design guidance only, not tested.

3: This current is at the VBAT pin.

2.2 DC Specifications (Continued)

DC Specifications		Electrical Characteristics: Unless otherwise indicated, all limits are specified for: $V_{BAT} = 6.0V$ to $18.0V$ TAMB = $-40^{\circ}C$ to $+125^{\circ}C$ CLOADREG = 1 μ F				
Symbol	Parameter	Min	Typic al	Мах	Units	Conditions
Isc	Short-Circuit Current-Limit	50	_	200	mA	(Note 1)
Vон	High-Level Output Voltage (LBUS)	0.8 VBAT	_	—	V	
Vol	Low-Level Output Voltage (LBUS)	_	—	0.2 VBAT	V	

Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0Ω, TX = 0.4 VREG, VLBUS = VBAT).

2: For design guidance only, not tested.

3: This current is at the VBAT pin.

2.2 DC Specifications (Continued)

DC Specifications		Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VBAT = 6.0V to 18.0V TAMB = -40°C to +125°C CLOADREG = 1 µF				
Symbol	Parameter	Min Typic Max Units Condition				Conditions
	Voltage Regulator					
Vreg	Output Voltage	4.75	_	5.25	V	0 mA > lout > 50 mA, 7.0V < Vbat < 18V
VREG1	Output Voltage	4.4	_	5.25	V	0 mA > IOUT > 50 mA, 6.0V < VBAT < 7.0V
$\Delta VREG1$	Line Regulation	—	10	50	mV	IOUT = 1 mA, 7.0V < VBAT < 18V
$\Delta VREG2$	Load Regulation	—	10	50	mV	5 mA < IOUT < 50 mA, VBAT = Constant
VN	Output Noise Voltage	—	—	400	μVRMS	1 VRMS @ 10 Hz - 100 kHz
Vsd	Shutdown Voltage (monitor- ing VREG)	3.5	_	4.0	V	See Figure 1-4
Von	Input Voltage to Turn On Out- put (monitoring VBAT)	5.5		6.0	V	

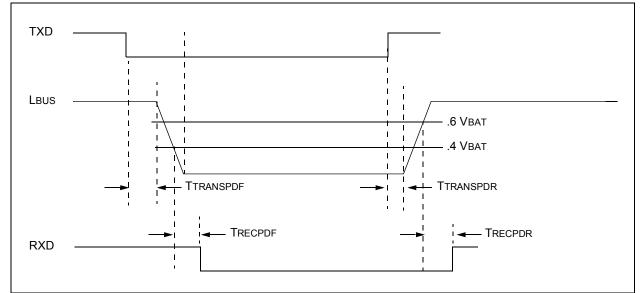
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0Ω , TX = 0.4 VREG, VLBUS = VBAT).

2: For design guidance only, not tested.

3: This current is at the VBAT pin.

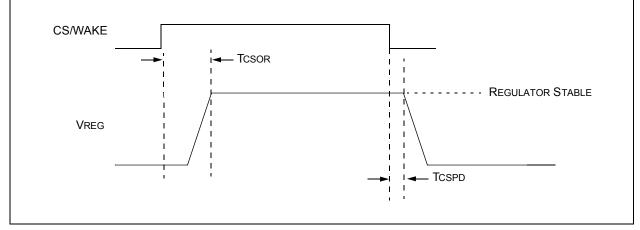
2.3 AC Specifications

AC Specifications			Characte nerwise inc 6.0V to 1 -40°C to	licated, a 8.0V	ll limits ar	e specified for:
Symbol	Parameter Min Typical Max Units		Units	Conditions		
	Bus Interface					
dV/dt	Slope Rising and Falling Edges	1.0	2.0	3.0	V/µs	(40% to 60%), No Load
dV/dt	Slope Rising and Falling edges	2.0	4.0	6.0	V/µs	(Note 1), No Load
t _{TRANSPD}	Propagation Delay of Transmitter	—	—	6.0	μs	t _{RECPD} = max
t _{RECPD}	Propagation Delay of Receiver	—	—	6.0	μs	(t _{RECPDR} or t _{RECPDF})
t _{RECSYM}	Symmetry of Propagation Delay of Receiver Rising Edge with Respect to Falling Edge	-2.0	—	2.0	μS	t _{RECSYM} = max
t _{transsym}	Symmetry of Propagation Delay of Transmitter Rising Edge with Respect to Falling Edge	-2.0	—	2.0	μS	t _{TRANSSYM} = max (t _{TRANSPDF} - t _{RANSPDR})
	Voltage Regulator					
t _{BACTVE}	Bus Activity to Voltage Regulator Enabled	10	—	40	μs	Bus debounce time
t _{VEVR}	Voltage Regulator Enabled to Ready	—	50	200	μs	(Note 2)
t _{vregpor}	Voltage Regulator Enabled to Ready after POR	—	—	2.5	ms	(Note 2) CLOAD = 25 nF
t _{CSOR}	Chip-Select to Operation Ready	0	50	200	μs	(Note 2)
t _{CSPD}	Chip-Select to Power-down	0	—	40	μs	(Note 2) No Cload
t _{SHUTDOWN}	Short-Circuit to Shutdown	_	450	_	μS	Characterized but not tested
tSCREC	Short-Circuit Recovery Time	_	3.0	—	ms	Characterized but not tested


Note 1: The mode does not conform to LIN Bus specification version 1.3.

2: Time depends on external capacitance and load.

TABLE 2-1: MCP201 THERMAL SPECIFICATIONS


Sym	Parameter	Min	Typical	Мах	Units	Test Conditions
θ _{RECOVERY}	Recovery Temperature (junction temperature)	—	+135	—	°C	Characterized but not tested
θ _{SHUTDOWN}	WN Shutdown Temperature (junction temperature)		+155	—	°C	Characterized but not tested
t _{THERM}	t _{THERM} Thermal Recovery Time (after Fault condition removed)		5.0	—	ms	Characterized but not tested

2.4 Timing Diagrams and Specifications

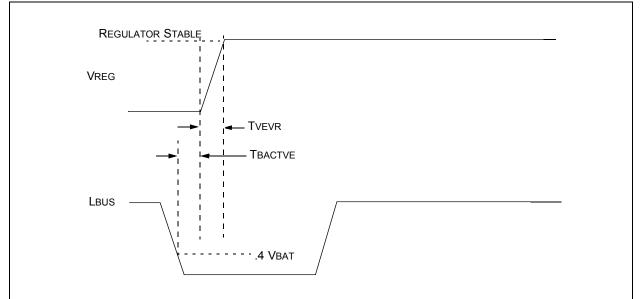
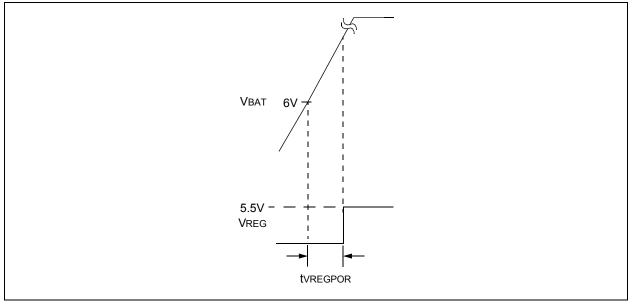
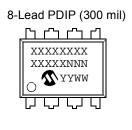
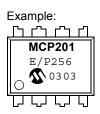


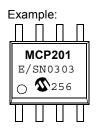
FIGURE 2-1: BUS TIMING DIAGRAM





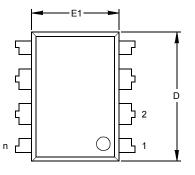
© 2003 Microchip Technology Inc.

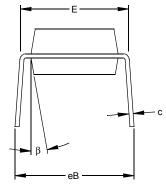

3.0 PACKAGING INFORMATION


3.1 Package Marking Information

8-Lead SOIC (150 mil)

Π	\square	Π	П
		XXX	
XX	-	YWV	
0	Ð	NNN	1
Π			Π

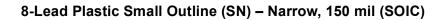


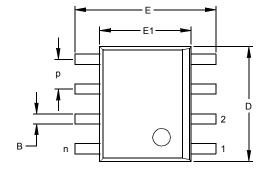

Legend:	XXX YY WW NNN	Customer specific information* Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.

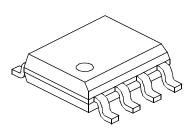

* Standard device marking consists of Microchip part number, year code, week code, and traceability code (facility code, mask rev#, and assembly code). For device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.

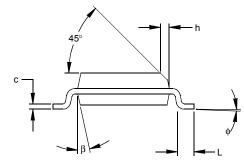
© 2003 Microchip Technology Inc.

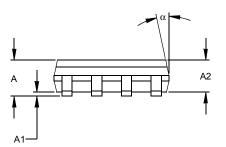
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)






	INCHES*			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


* Controlling Parameter § Significant Characteristic


Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018

	Units		INCHES*			MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8		
Pitch	р		.050			1.27		
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75	
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55	
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25	
Overall Width	Е	.228	.237	.244	5.79	6.02	6.20	
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99	
Overall Length	D	.189	.193	.197	4.80	4.90	5.00	
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51	
Foot Length	L	.019	.025	.030	0.48	0.62	0.76	
Foot Angle	¢	0	4	8	0	4	8	
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25	
Lead Width	В	.013	.017	.020	0.33	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-x /xx</u>	Examples:		
Device 1	Temperature Package Range	 a) MCP201-E/SN: Extended Temp., SOIC package. 		
		 b) MCP201-E/P: Extended Temp., PDIP package. 		
Device:	MCP201: LIN Transceiver with Voltage Regulator MCP201T: LIN Transceiver with Voltage Regulator (Tape and Reel)	c) MCP201-I/SN: Industrial Temp., SOIC package.		
Temperature Range:	$= -40^{\circ}$ C to $+85^{\circ}$ C	 d) MCP201-I/P: Industrial Temp., PDIP package. 		
Temperature range.	$E = -40^{\circ}C$ to $+125^{\circ}C$	e) MCP201T-I/SN: Tape and Reel, Industrial Temp., SOIC package.		
Package:	P = Plastic DIP (300 mil Body), 8-lead SN = Plastic SOIC, (150 mil Body), 8-lead	f) MCP201T-E/SN: Tape and Reel, Extended Temp., SOIC package.		

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. 3. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

MCP201

NOTES:

Note the following details of the code protection feature on Microchip devices:

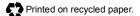
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

 \circledcirc 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUS, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Phoenix

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Marketing Support Division Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599 China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Hong Kong SAR Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao

Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 India Microchip Technology Inc. India Liaison Office Marketing Support Division Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 EUROPE Austria Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy

43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781 United Kingdom

Microchip Ltd 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/25/03