

SHTxx Humidity & Temperature Sensmitter

Application Note Compensation of RH non-Linearity

1 Introduction

The SHTxx devices show a small non-linearity of the humidity sensor. This application note describes various ways to compensate it in the attached microcontroller.

2 Revision History

October 20, 2001	C2	URO	Revision 0.9 (Preliminary)
February 10, 2002	C2	URO	Revision 1.0 modified to final coefficients

3 Implementation

If the formula on page 2 of the SHT1x datasheet is to complex and therefore too computation intense, the follow calculations may provide simplified alternatives.

The examples are based on a 8 bit humidity readout. 12 bit readouts can be converted with similar formulas but with a slightly more complex calculation.

Type of calculation	Inaccuracy due to non- linearity (10-90%RH)	Complexity of calculation
linear	± 2.2% RH	Simple (8bit subtract, right shift)
2 * linear	± 0.8% RH	Quite simple (8bit multi, 16bit add/subtract)
Polynomial 2 nd order	±0.1% RH	Floating point multiplications

3.1 Linear

The most basic conversion formula from sensor output to %RH is: $RH_{simple} = c_1 + c_2 \bullet SO_{RH}$ with $c_1 = 0.5$; $c_2 = 0.5$

3.2 2* linear

For improved accuracy with minimal calculation complexity the following calculation is recommended: $RH_{real} = (a*SO + b) / 256$ Where SO denotes the 8 bit humidity sensor output signal.

Validity	а	b
$0 \le SO \le 107$	143	-512
$108 \le SO \le 255$	111	2893

With the above values the calculation can be done with a single 8 bit multiplication followed by a 16bit addition / subtraction.

Sample Code:

u16 result; // 16Bit unsigned for the result u08 sensor_out; // 8Bit unsigned for the sensoroutput sensor_out = readSensor8(); // read 8 bit humidity value from SHTxx If (sensor out <= 107) { result = mult8Bit(143, sensor out); // result = a * sensor out result < 512 ? result = 512; // check for underflow result = result - 512// result = result + b } else { result = mult8Bit(111, sensor_out); // result = a * sensor_out result = result + 2893 // result = result + b result > 25600 ? result = 25600; // check for overflow (optional) } //8 MSB's are 0-100%RH integers, 8 LSB's are remainder result = result >> 8 // result = result / 256

3.3 Polynomial 2nd order

Please consult the Datasheet for formula and coefficients.

Headquarters and Sales Office

SENSIRION AG	Phone:	+ 41 (0)1 306 40 00	
Eggbühlstr. 14	Fax:	+ 41 (0)1 306 40 30	
P.O. Box	e-mail:	info@sensirion.com	
CH-8052 Zürich	http://www.sensirion.com/		
Switzerland			