
 E-LAB AVRco TCP/IP Extended UDP NetStack preliminary

AVRco NetStack DOC xUDP Stack developed by Udo Purwin 28.06.2001

EtherNet/InterNet Driver AVRco NetStack xUDP preliminary
There are many ways how two or more units (processors, control units etc) can communicate with each other.
One of them is Ethernet. The term „embedded Ethernet“ is heavily in use in the last time in the context with fast
connections between control units or the connection between PC and control units.
Also the term „embedded TCP/IP“ is also in use with context. But one must be careful. TCP/IP is etablished as a
common synonym for Ethernet. In reality with most cases not the TCP-protocol is implemented but an UDP/IP
connection (eg. ProfiBUS-NET). To be honest, the TCP protocol sometimes is also implemented. But a sharp
look to the internas shows that realtime jobs are always processed with UDP/IP. TCP/IP is not applicable for fast
control functions because it uses a difficult and time consuming handshake protocol.
A network specialist now can argue that the UDP-protocol is very fast but also very unsecure. That is correct.
UDP doesn’t have any handshake. The sender transmits a packet and that’s all. Whether the packet is received
from the target or if there was an error, he can’t know it because UDP doesn’t have any response from the
receiver build in.
This shortage of the „unsecure“ UDP-protocol is avoided by E-LAB (and also from most of the industrial UDP
implementations) throu the use of an additional handshake implemented into the standard UDP protocol.
E-LAB calls this extended UDP or abreviated xUDP.

xUDP
With xUDP the Sender appends a 2Byte checksum to the data field. The checksum is calculated by an addition
of all data bytes. The data block (byte count) of th senders is then incremented by 2Bytes. The Receiver now
calculates it’s own checksum from the data block exclusive the appended checksum. This checksum now is used
as an acknowledge (handshake) for the reception of the packet. The receiver sends this checksum back to the
sender (target = sender.UDPAknPort).

Now the Sender knows that the receivers at least has received the packet. He compares the received checksum
with it’s own, calculated at send-time. If these two numbers are equal the data packet was received by the
receiver without any errors.

On the other side the Receiver compares it’s own calculated checksum with this one, which was appended to the
data packet. Now he also can ascertain whether the received packet is complete and error free.
With this implementation the „unsecure“ UDP is converted to the secure xUDP.

With xUDP it’s possible to implement a high speed communication which is more powerful for realtime
applications as the TCP type. For these application which need TCP, FTP etc. E-LAB will provide a so called
GateWay program (Redirector) which translates xUDP packets with the help of any PC connected to the same
network into all other protocol types. This Gateway method is also used by other embedded Ethernet
applications where resource useage/consumption is a problem (RAM, ROM) (eg. Motorola HC11/HC16).

Of course we know some TCP/IP and HTTP implementations also in a small PIC. But this can only be toys at
all. They are unpracticable in the real world. If one really needs the complete Ethernet protocols in an embedded
system he must ask himself whether he uses the wrong processor family ☺

Perfomance
With a mega103 running at 6.4MHz the following transfer rates can be achieved :

PING 65 Bytes ca. 3msec PING 1450 Bytes ca. 10msec
Data transfer ca. 110kBytes/sec corresponds to a bitrate of ca. 1.0Mbit/sec

Code size ca. 6kBytes memory useage RAM ca. 400Bytes + RxBuffer + TxBuffer
Memory useage stack ca. 40 Bytes frame ca. 60 Bytes EEprom ca. 55 Bytes

 E-LAB AVRco TCP/IP Extended UDP NetStack preliminary

AVRco NetStack DOC xUDP Stack developed by Udo Purwin 28.06.2001

Import
As usual with AVRco the driver must be imported:

Import SysTick, NetStack, ..;

Because the generic hardware driver NetStack_IOS is not ready at this time, the internal hardware driver
RTL8019 must be imported. If the StackMapper PC-program is involved into the communication the additional
used protocol(s) must be imported.

From NetStack Import RTL8019, xEmail, xFTP, xHTTP, xTelNet, xChatMode,

XFileMode, xPeerMode;

Define

ProcClock = 6400000; // 6.4 MHz
SysTick = 10; // 10msec
XData = $8000,$FFFF; // external data area
XData1 = $4300,$4FFF, noInit; // I/O area of RTL8019
StackSize = $30, iData; // at least 50 bytes stacksize
FrameSize = $40, iData; // at least 64 bytes frame size
NetStack = 1536, xData; // total buffer size, location
ARPcacheSize= 20; // arpcache entries
RTL8019 = $4300, Int5; // RTL base addr, Interruptpin
RTLreset = PortD, 2; // reset line to RTL8019

Exported types and constants
The NetStack driver exports several type declarations which can be or must be used by the application:

Type tMACaddress = array[0..5] od byte;

Type tIPaddress = array[0..3] od byte;

Type tGetPacketInfo = record
TypeOfPacket : TPacketType;
SourceIP : TIPAddress;
UserPortID : byte;
SourcePort : word;
DestPort : Word;
DataBeginPtr : Pointer;
DataLength : word;

End;

Type tUDPpackInfo = record
TargetIPAddr: TIPAddress;
SourcePort : Word;
DestPort : Word;
WaitResp : boolean;
DataPtr : pointer;
DataLen : word;

End;

Type tNetErrorType = (NetErrNone, NetErrChkSum, NetErrSndPkt,
NetErrNoAkn, NetErrPktSize);

Type tPacketType = (ptARP, ptPINGRequest, ptPINGResponse, ptICMP,
ptTCP, ptUDP, ptHTTP, ptFTP, ptTFTP, ptTELNET,
ptNONE);

Type tIdentType = (idxRequMapper, idxFTP, idxEmail, idxTelNet,
idxChat, idxHTTP, idxFile);

 E-LAB AVRco TCP/IP Extended UDP NetStack preliminary

AVRco NetStack DOC xUDP Stack developed by Udo Purwin 28.06.2001

type
TIdentInfo = record

IdentCode : String[13];
BName : String[20];
AknPort : Word;
BufSize : Word;
Stackversion: Word;
CompileDate : String[10];
CompileTime : String[5];
CompilerRev : Word;
Firmware : String[20];
xUDP : boolean;

end;

TMAPerror = (MapErrNone, MapErrStackUnknown, MapErrFailed);

TFTPcmd = (FTPChangeDir, FTPChangeDirUp, FTPDelete, FTPMakeDir,
FTPRemoveDir, FTPRename, FTPSendFile, FTPFileAppend,
FTPReceiveFile);

TFTPInfo = record
Username : string[20];
Password : string[20];
FTPServer : string[15];
Port : word;
Filename : string[32];
Filename1 : string[32];
TransfBinary : boolean;
CmdCode : tFTPcmd;
Result : tMapError;

end;

tMailInfo = record
MailServer : string[16];
Port : word;
Sender : string[32];
CC : string[32];
BCC : string[32];
UserID : string[16];
ReplyTo : string[16];
Subject : string[16];
Result : tMapError;

end;

TFILEInfo = record
Filename : string[32];
Filename1 : string[32];
FILEcmd : tFTPcmd;
Result : tMapError;

end;

const
StackIdentPort = 61611;
StackMapperPort = 61612;

Exported variables
There are many variables in use and also exported, but the applicated should not directly access them.
If a StackMapper Message has been received the kind of the message can be identified with the enumeration

Var MapperPackType : tIdentType;

 E-LAB AVRco TCP/IP Extended UDP NetStack preliminary

AVRco NetStack DOC xUDP Stack developed by Udo Purwin 28.06.2001

Dependant of the content of the variable „MapperPackType“ the following records can be accessed:

Var RxMailInfo : tMailInfo;

RxFTPInfo : tFTPInfo;
RxTelNetInfo : tTelNetInfo;
RxHTTPInfo : tHTTPInfo;
RxChatInfo : tChatInfo;
RxFileInfo : tFileInfo;
RxPeerInfo : tPeerInfo;

If a message or command must be passed to the StackMapper one of the following provided variables must be
used dependant of the message type:

Var TxMailInfo : tMailInfo;

TxFTPInfo : tFTPInfo;
TxTelNetInfo : tTelNetInfo;
TxHTTPInfo : tHTTPInfo;
TxChatInfo : tChatInfo;
TxFileInfo : tFileInfo;
TxPeerInfo : tPeerInfo;

Exported functions and procedures
Setup
The following functions and procedures are normally only needed at program start.

Procedure Net_SetLocalIPAddress(IPOct4, IPOct3, IPOct2, IPOct1 : Byte;

MaskOct4, MaskOct3, MaskOct2, MaskOct1 : Byte);
Because the local IP-address must be placed into the eeprom, this procedure is only necessary if the local IP-
address must be changed at runtime.

Procedure Net_SetDefaultGateway(Gateway4, Gateway3, Gateway2, Gateway1 :

Byte);
Also the Gateway address must be placed into the eeprom. So this procedure is only necessary if the Gateway
address must be changed at runtime..

Procedure Net_StackSetAktive(YESNO : Boolean);
The NetStack driver is inactive by default. With this procedure the driver can be disconnected (false) and
connected (true) to the network.

Procedure Net_ExtendedUDP(YESNO : Boolean);
The extended UDP mode is inactive by default. With this procedure the extended UDP-mode can be cleared
(false) and enabled (true).

Function Net_AddUsrPort(Port : Word; ID : byte) : boolean;
With Net_AddUsrPort a port can be enabled which can be used now to receive packets. Port defines a port
number and ID any value but which must be unique. These ID is is returned by the function Net_GetPacket
in the record GetPacketInfo for information of the application.

Function Net_DelUsrPort(Port : Word) : boolean;
With Net_DelUsrPort an existing port is deleted from the Port LookUp table and therefore is never more
accessible from outside.

Runtime switches
With these procedures the behaviour of the NetStacks for incoming requests can be controlled.

Procedure Net_AllowARPResponse(YESNO : Boolean);
A false parameter disables the scanning of the stack. This means that it doesn’t respond to a broadcast and
therefore it is invisible. This is important for security applications. The switch is true by default.

 E-LAB AVRco TCP/IP Extended UDP NetStack preliminary

AVRco NetStack DOC xUDP Stack developed by Udo Purwin 28.06.2001

Procedure Net_AllowPINGResponse(YESNO : Boolean);
A false disables pinging of the Stack. This means that an incoming PING will be ignored and the stack is
invisible. This is important for security applications. The switch is true by default.

Procedure Net_AllowRequestBoard(YESNO : Boolean);
A false disables requesting internal data of the NetStack. This means that a BoardRequest (see below.) will be
ignored. This is important for security applications. The switch is true by default.

Operations
These functions/procedures serve for the communication between the NetStack and other participiants of the
network.

Procedure Net_StartNet;
These procedure starts the communication of the NetStack with the network.

Function Net_PollPacket : boolean;
These function returns the receive state of the NetStack. The result is true if a packet is present, otherwise it is
false.

Function Net_GetPacket(VAR GetPacketInfo : TGetPacketInfo) : Boolean;
This function returns the record GetPacketInfo which contains all relevant informations of the received packet,
on condition the boolean result is true. If the result is false, a packet has been received but either it was invalid or
it has been processed for internal reasons like ARP, PING, NetStackInfo etc.
This function expects that a packet has been received. If this function is called without the knowledge that a
packet is available, it loops until a packet has been received and then it returns. Because of this the function
Net_PollPacket should be called at first. If it returns with a TRUE then Net_GetPacket must be called.

Function Net_SendUDPPacket(UDPinfo : tUDPpackInfo) : TNetErrorType;
This is the transmit function. The application passes all relevant information of the packet to send in the record
UDPInfo. The result is of type tNetErrorType.

Function Net_RequestMapper(const IdentType : tIdentType) : TNetErrorType;
This function serves for registration and communication with a StackMapper/xUDPMapper. This is an E-LAB
PC program which maps xUDP packets into FTP, E-MAIL etc. packets and transmits and receives packets from
outside. The parameter „IdentType“ defines the general behaviour of this function.
IdxRequMapper the NetStack registrates itself at the Mapper. Registration is mandatory for all further

Operations with the StackMapper. No additional data necessary and not possible.
IdxFTP The NetStack contacts the Mapper for a pseudo-FTP connection/transfer. Therefore

the record TxFTPInfo must be populated with the suiting parameters.
IdxEmail The NetStack contacts the Mapper for a pseudo-EMail connection/transfer. Therefore

the record TxMailInfo must be populated with the suiting parameters.
idxTelNet The NetStack contacts the Mapper for a pseudo-TelNet connection/transfer. Therefore

the record TxTelNetInfo must be populated with the suiting parameters.
idxChat The NetStack contacts the Mapper for a ChatMode connection/transfer. Therefore

the record TxChatInfo must be populated with the suiting parameters.
IdxHTTP The NetStack contacts the Mapper for a pseudo-HTTP connection/transfer. Therefore

the record TxHTTPInfo must be populated with the suiting parameters.
IdxFile The NetStack initiates file-operations through the Mapper on the PC of the Mapper.

Therfore the record TxFileInfo must be populated with the suiting parameters.
IdxPeer The NetStack initiates file-operations through the Mapper on the Peer-to-Peer

network. Therfore the record TxPeerInfo must be populated with the suiting
parameters.

Except of the IdxRequMapper call, a data packet can be appended to the info record which will be send by this
function. The corresponding functions are „Net_TxInitDataBlock“ and „Net_TxAddDataStr“.
The result of the function is a „NetErrNone“ if the Mapper was found and the communication was successful.
Otherwise a TimeOut error has occured. Except of „IdxReqMapper“ the StackMapper replies always with an
xUDP reply packet which must be analized by the application. This info record is of the same type as the info
send. The last entry contains a result info.

 E-LAB AVRco TCP/IP Extended UDP NetStack preliminary

AVRco NetStack DOC xUDP Stack developed by Udo Purwin 28.06.2001

Function Net_TxInitDatablock(const IdentType : tIdentType) : pointer;
The function Net_RequestMapper can be instructed to append additional data to the info-record, for example the
body of the e-mail message. Therefore the data block must be initialized before it data can be added. This must
be done with this function. Also in case of an empty data block the call of this function is mandatory in order to
avoid unexpected behaviour or errors.

Function Net_TxAddDataStr(st : string[32]) : boolean;
After the initialization of the data block with „Net_TxInitDataBlock“ strings can be appended to the data block.
The result „Pointer“ of the above init function is not needed here. A success returns a true.

It’s also possible to use the copy function „CopyBlock“ to fill the data block. Example:

destPtr:= Net_TxInitDatablock;
CopyBlock(srcPtr, destPtr, count);
_TX_DATA_COUNT:= count;
err:= Net_RequestMapper(idxFTP);

The system variable _Tx_Data_Count must be set to the correct value, if CopyBlock or similar is used.
Support functions
Procedure STRtoIP(IPstr : String[15]; VAR Result : TIPAddress);
This function converts an IP-string with the format ’nn.nn.nn.nn’ into an IP-address.

Function IPtoSTR(IP : TIPAddress) : String[15];
This function converts an IP-address into an IP-string with the format ’nn.nn.nn.nn’.

Support tools
At this time there are 3 support programs for test purposes and operation of the NetStacks.
xUDPconf is a program which can be called within the IDE PED32 and also operated separately. It serves

for first time run of a NetStack hardware/software. The absolutely necessary setup of the board
name, the IP-address and the MAC-Address can be done with this program.

StackCheck is a complete and superior test program where a entire network and all involved computers and
NetStacks can be tested and checked thoroughly. It must be downloaded and installed separate.
A user-ID for working is necessary.

xUDPmapper is a program which serves several jobs. The main job is to translate/map the xUDP packets
from the local NetStacks into TCP/IP packets (FTP, http etc) and vice versa. It works as a link
from NetStacks to the TCP/IP world. Because of this it should be placed into the autostart of
one PC in the local network. The program xUDPconf is also build in. In addition a few simple
but effective test function are build in. xUDPconf and xUDPmapper are always installed with
the AVRco system. StackCheck must be installed separate.

 E-LAB AVRco TCP/IP Extended UDP NetStack preliminary

AVRco NetStack DOC xUDP Stack developed by Udo Purwin 28.06.2001

Application
The application must provide several constants for a valid behaviour of the NetStack.

const // into Flash

// these 2 constants !must! be provided by the user
Date = 'dd.mm.yyyy';
Time = 'hh:mm';

{$EEPROM}
StructConst // into EEprom

// first 2 bytes in AVR EEprom not useable
eDummy : word = 0;
// these 9 constants !must! be provided by the user
Net_ARPTimeOut : Byte = 100; // Systicks !!!
Net_ARPRetry : Byte = 3; // Request retries
Net_SendTimeOut : Byte = 50; // Systicks !!!
Net_SendRetry : Byte = 5; // Send retries
Net_UDPAknPort : Word = 1189; // Handshake port
Net_LocalMACaddr : tMACaddress = ($02, $2C, $2C, $CE, $AE, $15);
Net_LocalIPaddr : tIPaddress = (192, 168, 1, 15);
Net_LocalMask : tIPaddress = (255, 255, 255, 0);
Net_xUDPMapper : tIPaddress = (0, 0, 0, 0);
Net_DefaultGateWay: tIPaddress = (0, 0, 0, 0);
Net_BoardName : String[20] = 'E-LAB xUDP NET-Stack';
Net_FirmWare : String[20] = 'E-LAB AVRco Test';

Options
procedure NetStack_LEDs(LED : byte; OnOff : boolean);
This optional CallBack procedure can be provided by the application. If present, the NetStack driver calls it for
switching some LEDs on/off.

Details
Not ready at this time.

Define

XData
XData1
StackSize
FrameSize
NetStack
ARPcacheSize
RTL8019
RTLreset

MACaddress
Ipaddress

GetPacketInfo
TypeOfPacket
SourceIP
UserPortID
SourcePort
DestPort
DataBeginPtr
DataLength

UDPpackInfo
TargetIPAddr
SourcePort

 E-LAB AVRco TCP/IP Extended UDP NetStack preliminary

AVRco NetStack DOC xUDP Stack developed by Udo Purwin 28.06.2001

DestPort
WaitResp
DataPtr
DataLen

NetErrorType
NetErrNone
NetErrChkSum
NetErrSndPkt,
NetErrNoAkn
NetErrPktSize

PacketType
PtARP
PtPINGRequest
PtPINGResponse
ptICMP
ptTCP
ptUDP
ptHTTP
ptFTP
ptTFTP
ptTELNET
ptNONE

Net_ARPTimeOut
Net_ARPRetry
Net_SendTimeOut
Net_SendRetry
Net_UDPAknPort
Net_LocalMACaddr
Net_LocalIPaddr
Net_LocalMask
Net_ReDirector
Net_DefaultGateWay
Net_BoardName
Net_FirmWare

StackIdentPort

TIdentInfo
IdentCode
BName
AknPort
BufSize
Stackversion
CompileDate
CompileTime
CompilerRev
Firmware
xUDP

Example and schematics
Several example program can be found in the installation directory ..\AVRco\Demos\NetWork. The
correspondig schematic EtherBoardsch.PDF is located in the directory ..\AVRco\DOCs

