
E-LAB Computers D74906 Bad Rappenau www.e-lab.de

EE--LLAABB
Production Programmer System

AAVVRR UUPPPP11XX--DDLLLL

www.e-lab.de

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 1/26

l Production Programming System for Atmel AVR CPUs
l Upto 16 simultaneous programmings
l Controlled through a WIN32 DLL
l Master control program supplied by the user
l One USB port used for each programmer
l By the use of E-LAB UPP1-X Programmer a flexible and
l fast InCircuit programming can be managed
l Projects can be packed or encrypted on a PC. The
 generated projects, upto 16, must be stored onto a SD
 flashcard.
l Simple program change in the production by exchanging
 the flashcard or by selecting another project stored on
 the card.
l File/project administration also through the DLL with the
 support functions: List all Files, Delete File, Download
 File, Check File etc.

March 2014

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 2/26

In-Circuit programming of Single Chips in mass production

With mass production of electronic boards build with Single-Chips there is often the problem how to
program the CPUs within the automatic testing of the board. Common ISP programmers are cheap and
often easy to use but they can’t be easily integrated into the automatic test environment.

In some cases the program start can be remotely controlled, but at least with analyzing the result it
becomes difficult or impossible to pass it to the test equipment. The supplied PC-software for the
programmer is firstly intended for manual control. Also if the software interface to the PC is disclosed
there is a huge amount of programming to build an own specific driver to operate the programmer.

Todays Single-Chips as the AVR need many fuse- and lockbits which the system must handle. On the
other hand in most cases it isn’t the job of the production managers to create complexe software mainly if
the the production location is far away from the development department.

Nearly insoluble is the job if several boards must be programmed at the same time to increase system
throughput or if there are more than one CPU on a board which must be programmed simultaneously.
Then the software programming problems reach an unacceptable level.

If the programming system can be controlled totally by a so called DLL (dynamic link library), the
software developer of the test system can concentrate on it’s main job like generating commands to start
programming and analyzing the results.

With the E-LAB Programmer-DLL there is a simple way to integrate the In-Circuit programming into an
existing test system. The main software communicates with a few DLL-calls through the DLL with upto
16 programmers connected via USB. The DLL and the programmers do the big part of the job without
loading the the test system in an unecessary way.

A production programming system consists of the E-LAB Programmer-DLL and 1 to 16 E-LAB
UPP1-X programmers.

The UPP1X DLL for one UPP1-X version is free of charge and can be downloaded from the E-LAB
homepage.
The UPP1X DLL for multiple programmers costs €250

E-LAB Computers D74906 Bad Rappenau Germany
Tel. 07268/9124-0 Fax. 07268/9124-24
WEB: www.e-lab.de mail: info@e-lab.de

www.e-lab.de
mailto:info@e-lab.de

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 3/26

Production Programmer UPP1X-DLL
The E-LAB programmer DLL serves an interface between a test automat (or PC) and UPP1-X Programmers in the
production of boards which are equipped with Atmel AVRs. The DLL can operate upto 16 UPP1-X programmer
siumultaneously and therefore it’s well suited for heavy duty programming in the mass production field.

The system consists of a Windows DLL (XP, WIN7) and several via USB connected UPP1-X programmers. The
host (testsystem or PC) must be USB enabled.

The test computer (application) communicates via the DLL with the programmers. The DLL must be installed in the
test computer. By the use of a DLL the control software can be written in any programming language which can
handle DLLs. Also DLL-enabled script tools are possible.

The system DLL <> Programmer uses packed or encrypted files which must be build with the help of the E-LAB
program AVRprog.exe. These files then contain all necessary informations (Flash file, EEprom file, CPU-type,
Lockbits, Fusebits etc). Because of this a manipulation or faulty setup of the programmers by the production staff is
absolutely impossible.

Flash card
The UPP1-X programmer contains a FAT16/32 file system and handles flash cards of the microSD type. Cards can
be read and written. Common infos for file downloading can be found in the UPP1-X manual.

File types
The DLL supports two file types (packed or encrypted). These files must be created by the E-LAB PC-program
AVRprog.exe. With the menu items below UPP1-X files can be created. Also the common UPP1-X download

dialog can be used for packing or encrypting files.
The content of an encrypted file is scrambled and only readable with a unique key. This
key programmed and fixed in the UPP1-X programmer. Each device has its own unique
key. So files which are encrypted with this key can only be read by this device.

 A packed file has a binary content which includes all necessary informations
but none encryption, passwords or keys. A packed project is processable on each UPP1-
X device.
 The file extension is always .pack or .pac

If an additional or new key for the encryption of a UPP1-X project is needed
this key/password of a connected UPP1-X programmer can be readout with the
menu item above. The user of this programmer then passes this key to the
project and file owner. The latter now must add this password/key in the dialog
list below.

The password list contains all formerly introduced UPP1-X keys.
With Del PWD an entry can be deleted and with Add PWD a new
key/password can be inserted. This new key either must be supplied
by the user of the the programmer with the help of the above dialog
or the key of actual connected UPP1-X programmer must be
uploaded with the Read PWD button. In the first case the received
key must be manually inserted into the edit field. Iin the second
case this is done with the ReadPWD button.

If the edit field contains the new password/key it must be inserted
into the list with the Add PWD button.

The currently loaded project then can be encrypted with the
Encrypt button. To finish this a list entry (key) must be selected

with a click onto it. The selected key then becomes marked with a blue bar. The generated file can directly be stored
onto a Flash Card (MMC or SD). Alternatively it can be send to the user via email who copies it then onto his Flash
Card. Such an encrypted file is only useable on this programmer where the used key comes from. The decrypting is
only done while programming. So the real file contents is never visible.

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 4/26

DLL
The DLL does the big part of the work. It is constructed in a way that the main control program in the test computer
(or PC) can be concetrated to essentials : Download of programs/firmware into the connected UPP1-X programmer,
programming start, result analyzing. All functions return as the funktion result a string (Pchar) and an integer (res)
as an enumeration. The very first access to the DLL must be an AbortAll function call!

Enumeration of the function results:

resNone, resOk, progDone, noProg, progFound, progBusy, progDefect, progIdle, progComErr,
progTimeOutErr, PwrDownErr, PwrSupplyErr, SignatureErr, invPassword, limitExc,
eraChip, eraFlash, eraEEp, eraUsrRow, ProtectedErr, NotEmptyErr, prgFlash, prgEEp, prgUsrRow,
verifyFlash, verifyEEp, verifyUsrRow, VerifyErr, dwnLoading, ParmErr, dwnLoadErrF, dwnLoadErrE,
dwnLoadErrU, invFile, invFName, FileExist, FileNotFound, FileErr, FileDwnErr, MMCok,
MMCnoMedia, MMCmissing, MMCinitFailed, MMCresetFailed, MMCcheckFailed, MMCnoProg,
MMCprogBusy

For example “resNone“ has the value 0 and “progFound“ the value 4, “ProgBusy” = 5

The Interface functions of the DLL are as follows (in Pascal notation):

procedure AbortAll;

procedure GetProgIDs (var res : integer; resStr : PChar);
// res = count of programmers found

procedure InitChannel (Channel : integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, ProgDefect, progFound

procedure DownloadFile(Channel : Integer; FileName: PChar; var res : integer; resStr : PChar);
// res = noProg, progBusy, invFile, invFName, dwnLoadErr, FileExist, MemError, MMCprotected, resOk

procedure DeleteAfile(Channel : Integer; FileName: PChar; var res : integer; resStr : Pchar);
// res = noProg, progBusy, MemError, resOk

procedure GetFileNames(Channel : integer; var res : integer; resStr : Pchar);
// res = noProg, progBusy, MemError, resOk

procedure CheckProgrammer(Channel: integer; var res : integer; resStr : Pchar);
// res = mmcOk, mmcMissing, mmcInitFailed, mmcResetFailed, mmcCheckFailed, mmcNoProg, mmcBusy

procedure CheckAfile(Channel : integer; FileName: PChar; var res : integer; resStr : PChar);
// res = progBusy, noProg, MemError, invFile, resOk

procedure OpenAfile(Channel : integer; FileName: PChar; var res : integer; resStr : PChar);
// res = progBusy, noProg, notFound, invFile, errPwrDown, errSignature, dwnLoadErr, errProtected, resOk
Note: res is a special enumeration!

procedure GetProjParams(Channel : integer; FileName: PChar; var res : integer; resStr : PChar);
// res = progBusy, noProg, MemError, invFile, dwnLoadErr, resOk

procedure GetFileState (Channel : integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, invFName, resOk

procedure CloseAfile(Channel : integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, resOk

procedure GetTargVolt(Channel: integer; var Volt, res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk

procedure CheckDevice(Channel: Integer; var res : integer; resStr : Pchar);
// res = resNone, progBusy, noProg, errPwrDown, errSignature, errNotEmpty, errProtected

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 5/26

procedure ProgDevice(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

procedure EraseDevice(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, invFile, errPwrDown, errNotEmpty, resOk

procedure EraseDeviceX(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, invFile, errPwrDown, errNotEmpty, resOk

procedure EraseDeviceUsr(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, invFile, errPwrDown, errNotEmpty, resOk

procedure VerifyDevice(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

procedure ProgFlash(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

procedure ProgEEprom(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

procedure ProgUsrRow(Channel: Integer; var res : integer; resStr : PChar); // XMega only
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

procedure ProgFuses(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, dwnLoadErr, errPwrDown, errSignature, errProtected, resOk

procedure ProgLockBits(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, dwnLoadErr, errPwrDown, errSignature, errProtected, resOk

procedure VerifyFlashOnly(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

procedure VerifyEEpromOnly(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

procedure VerifyUsrRowOnly(Channel: Integer; var res : integer; resStr : PChar); // XMega only
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

procedure GetProgStatus(Channel: integer; var res : integer; resStr : Pchar);
// res = resNone, limitExc, eraChip, prgEEp, verifyEEp, prgFlash, verifyFlash, progDone, errPwrDown,
// errSignature, errProtected, errNotEmpty, errVerify

procedure ClosePort(Channel: Integer; var res : integer; resStr : PChar);
// res = noProg, resNone

procedure ReadBackChipF (Channel : Integer; Block : Pointer; source : Integer; var res : integer;
 resStr : PChar);
// res = progBusy, noProg, MemError, errPwrDown, errSignature, errProtected, dwnLoadErr, progProtected,
// dwnLoadErrF, resOk

procedure ReadBackChipE(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;
 resStr : PChar);
// res = progBusy, noProg, MemError, errPwrDown, errSignature, errProtected, dwnLoadErr, progProtected,
// dwnLoadErrF, resOk

procedure ReadBackChipU(Channel : Integer; Block : Pointer; source : Integer; var res : integer;
 resStr : PChar); // XMega only
// res = progBusy, noProg, MemError, errPwrDown, errSignature, errProtected, dwnLoadErr, progProtected,
// dwnLoadErrE, resOk

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 6/26

procedure DownProgBlockF(Channel : Integer; Block : Pointer; dest : Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, MemError, errPwrDown, errSignature, errProtected, dwnLoadErr, progProtected,
// resOk

procedure DownProgBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);
// res = progBusy, noProg, MemError, errPwrDown, errSignature, errProtected, dwnLoadErr, progProtected,
// resOk

procedure DownProgBlockU(Channel : Integer; Block : Pointer; dest : Integer; var res : integer;
 resStr : PChar); // XMega only
// res = progBusy, noProg, MemError, errPwrDown, errSignature, errProtected, dwnLoadErr, progProtected,
// resOk

procedure DownOverBlockF(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);
// res = progBusy, noProg, errParm, dwnLoadErr, resOk

procedure DownOverBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);
// res = progBusy, noProg, errParm, dwnLoadErr, resOk

procedure DownOverBlockU(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar); // XMega only
// res = progBusy, noProg, errParm, dwnLoadErr, resOk

procedure DownFileBlockF(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;

 resStr : PChar);
// res = progBusy, noProg, MemError, progProtected, dwnLoadErrF, resOk

procedure DownFileBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;

 resStr : PChar);
// res = progBusy, noProg, MemError, progProtected, dwnLoadErrE, resOk

procedure DownFileBlockU(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar); // XMega only
// res = progBusy, noProg, MemError, progProtected, dwnLoadErrF, resOk

procedure UpFileBlockF(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;

 resStr : PChar);
// res = progBusy, noProg, MemError, progProtected, dwnLoadErrF, resOk

procedure UpFileBlockE(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;

 resStr : PChar);
// res = progBusy, noProg, MemError, progProtected, dwnLoadErrE, resOk

procedure UpFileBlockU(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;
 resStr : PChar); // XMega only
// res = progBusy, noProg, MemError, progProtected, dwnLoadErrE, resOk

procedure GetFuses(Channel : integer; selfuse : char; var fuse : integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, memError, resOk

procedure ReleaseTarget(Channel: integer; Var res: integer; resStr: PChar);
// res = progBusy, noProg, resOk

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 7/26

Function details
In the following context the term “USBport“ is used for the USB port name of the test computer. The term
“Channel“ (0..15) is used for a programmer port of the system and therefore defines a specific UPP1-X programmer
connected to the system. With the DLL function „InitChannel“ a specific USBport is mapped to a Channel. With a
single channel DLL “Channel” must be preset to 0. “Control System“ and “Host“ represents the test computer
where the DLL and the associated program is installed. The very first access to the DLL must be an AbortAll
function call!

Note:
With the single channel DLL “Channel“ must always contain a 0.

Initialization
These are called once at a start up. The first ones are absolutely necessary. A download must be done only if one or
more programmers must be feed with new content.

procedure AbortAll;

This procedure is necessary if the system “hangs“ or the DLL dropped out of synchronisation with the Host
or one or more programmers. After the command “AbortAll“ the DLL is in a basic state and can accept
new commands. All USBorts are closed.
A complete re-init with “GetProgIDs “ and “InitChannel “ must be done.

AbortAll must also be called before the control programm is terminated. Also if programmers are plugged
or unplugged.

procedure GetProgIDs (var res : integer; resStr : PChar);
// res = count of programmers found

This function scans the system for all connected UPP1-X programmers. The parameter “res“ returns the
count of programmers found. The parameter “resStr“ contains a corresponding count of UPP1-X names,
which are separated by a CRLF:
ECK5VMEA<CR><LF>ECM22DS8<CR><LF>
It can not be guaranteed that the order of the names is always the same. The order is preset by Windows.
Witrh most cases these names are not relevant for the the application. But it must know that the first name
then is identical with channel–0, the second with channel-1 etc. All operations use channel numbers and not
the names. But a relation between individual programmers and logical numbers is given.

procedure InitChannel (Channel : integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, ProgDefect, progFound

In “Channel“ a number (0..15) must be passed, which then must be used for further transactions with the
related programnmer. If this function was successful. “Channel“ now is used and can only be released
specific with “ClosePort” or common for all with “AbortAll“. This function must be called once for each
connected and used UPP1-X programmer. The function forces a hardware reset in the connected
programmer. If a “progDefect” is reported, a firmware download with AVRprog.exe must be executed.

procedure CheckProgrammer(Channel: integer; var res : integer; resStr : Pchar);
// res = mmcOk, mmcMissing, mmcInitFailed, mmcResetFailed, mmcCheckFailed, mmcNoProg, mmcBusy

If an UPP1-X programmer was found with the function “InitChannel” this device always can be checked
with this function. The parameter “Channel“ defines the desired programmer which must be checked.

procedure ReleaseTarget(Channel: integer; Var res: integer; resStr: PChar);
// res = progBusy, noProg, resOk
After most of these functions the target CPU stays in the Reset-mode. This function removes this reset state.

procedure ClosePort(Channel: Integer; var res : integer; resStr : PChar);
// res = noProg, resNone

This function disconnects a specific UPP1-X programmer and the used USB port becomes closed.

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 8/26

Maintenance functions for files
procedure GetFileNames (Channel : integer; var res : integer; resStr : Pchar);
// res = noProg, progBusy, MemError, resOk

This function serves for listing of all projects/files found on the MMC/SD card of the selected UPP1-X
programmer. If the result is resOk then “res” contains the count of files and “resStr“ is a string which
contains all the project names, separated by a <CR><LF>. Example:
TINY13.PAC<CR><LF>M128_1.ENU<CR><LF>TEST1200.PAC<CR><LF>

 It is the job of the application to extract the names out of this string.

procedure CheckAfile(Channel : integer; FileName: PChar; var res : integer; resStr : PChar);
// res = progBusy, noProg, MemError, invFile, resOk

Diese Funktion veranlasst einen Datei Test im selektierten UPP. Die Datei „FileName“ wird dabei auf die
Integrität diverser Parameter getestet. Ist das File zwar vorhanden aber der Check fällt durch, ist das
Resultat „invFile“.

procedure GetProjParams(Channel : integer; FileName: PChar; var res : integer; resStr : PChar);
// res = progBusy, noProg, MemError, invFile, dwnLoadErr, resOk

This function serves for a textual display of the project’s programmer parameter. The project/file must exist
on the storage media (MMC/SD) of the selected UPP1-X programmer. The parameter „FileName“ passes
the desired project or filename. If „res = resOk“ the string „resStr“ then contains 11 substrings, separated
through a CRLF. Example:
Test Tiny13<CR><LF> Project name
2003.Nov.08 12:15:22<CR><LF> Project created
2003.Nov.27<CR><LF> Project downloaded
TINY13<CR><LF> CPU name
8 MHz<CR><LF> CPU clock
996 bytes<CR><LF> Flash bytes used
58 bytes<CR><LF> EEprom bytes used
00 bytes<CR><LF> UserRow Bytes used
no<CR><LF> Auto Release
JTAG<CR><LF> Program Mode SPI, JTAG, TPI, PDI
AES<CR><LF> Encrypt Mode none, AES, AES+PWD
UPP1-X 3.30V max 100mA<CR><LF> Intern/extern powersupply

procedure DownloadFile(Channel : Integer; FileName: PChar; var res : integer; resStr : PChar);
// res = noProg, progBusy, invFile, invFName, dwnLoadErr, FileExist, MemError, MMCprotected, resOk

This function has only to be used if a project file must be downloaded into a particular programmer
connected to the Host. Because the E-LAB UPP1-X programmer has complete projects in its flash card this
is only necessary with a project change or the project is new or when the UPP1-X reports a corrupted
memory. The parameter FileName must contain the source path so that the DLL can find the file. The file
extension (.pac or .enu) also must be included.

Of course it is possible that each connected programmer gets its own projects. So it is possible to program
big boards with different AVRs which also have different firmware to program.

Encrypted files
Encrypted files must be created with the PC program AVRprog.exe and either an ISP3-X, an UPP1-X or an
UPP2-X must be connected at encryption time. The the file must be downloaded into the programmer
without any change. The programmer then decrypts this file at runtime, if it is used. The used key (on the
PC) must be the same as this one which is stored in the programmer, otherwise the error „invFile“ is
returned if the file is opened for processing.

Packed files
Packed files must be created with the PC program AVRprog.exe and must be downloaded into the
programmer without any change. The programmer then unpacks this file at runtime, if it is used.

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 9/26

procedure DeleteAfile(Channel : Integer; FileName: PChar; var res : integer; resStr : Pchar);
// res = noProg, progBusy, MemError, resOk

This removes a file/project from the flashcard of the programmer. The FileName must not contain any path
or drive informations. If the card is write protected the delete is denied and a „errProtected“ is returned. The
same is true with files which are directly written onto the card by a CardWriter. These FAT32 files can not
be deleted with the FAT16 mode which is used in the UPP.

Production

procedure OpenAfile(Channel : integer; FileName: PChar; var res : integer; resStr : PChar);
// res = progBusy, noProg, notFound, invFile, errPwrDown, errSignature, dwnLoadErr, errProtected, resOk

This function open and loads a file/project from the flashcard of the programmer. The parameter FileName
must not contain any drive or path informations. With analyzing the file extension (.pac or .enu) the UPP1-
X can find out whether this file is packed or encrypted. If it is an encrypted type then the UPP1-X internal
key is checked against file internal one. If the compare fails the operation becomes aborted and the result
„invFile“ is returned. A packed file is also checked for integrity and returns an “invFile“ if the check fails.

This function must be called once so that the UPP1-X is able to handle any operation concerning the target
CPU. Nearly all the functions below expect that a file is already opened.

While a file/project is open none of the above file maintenance functions must be called. If this is necessary
a possible opened file must be closed first with “CloseAfile“. After processing a maintenance function it is
mandatory to use “OpenAfile“ in order to initialize a working project.

If succesful, all control parameters are loaded and some operations and checks are started:
1. If the UPP1-X must supply the target (DUT) this voltage is generated and checked for the correct

value. In case of an error the result “errPwrDown“ is returned. If the target supplies itself the target
voltage is measured and in case of invalid values also an “errPwrDown“ is returned.

2. The first access to the target CPU is reading the chip-internal ID number. If this is not the same as
given in the project’s parameters the funvtion aborts with an “errSignature“.

3. If the CPU is protected by its Lockbits the result “errProtected“ is returned. This result can be ignored
if the CPU must be completely reprogrammed with “ProgDevice”, because this command implicitely
includes an “EraseDevice” which then includes a Lockbits erase.

procedure GetFileState (Channel : integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, invFName, resOk

This function checks whether a file /project is opened or not. If no project is opened an “invFName“ is
returned. If a project is open a “resOk“ is returned.

procedure CloseAfile(Channel : integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, resOk
 This function close an eventually open file.

procedure ProgDevice(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk

This function starts one programming cycle. If the result “res“ = resOk the operation started successful.
At first the device is erased. Then then the Flash, EEprom, Fusebits and Lockbits are programmed. Which
parts of the target (DUT) and how they have to be programmed must be defined by the dialog “Programmer
Options“ in the program AVRprog.exe before the pack or encryption file is created.

This function is the main operation of the DLL. Basically it is sufficient for all rquirements. All further
following functions are support types and are only necessary for special purposes.

If all relevant UPP1-X programmer have been startet the application must continously call the function
“GetProgStatus“ which polls all active ports to get the state of all startet UPPs.

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 10/26

Enhanced programming

procedure EraseDevice(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, invFile, errPwrDown, errNotEmpty, resOk

This function starts one chip erase cycle. If the result “res“ = resOk the operation is successful.

procedure EraseDeviceX(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, invFile, errPwrDown, errNotEmpty, resOk
 For XMegas only. With EraseDevice the UserRow is not deleted with XMegas. With this function also
 UserRow becomes erased.

procedure EraseDeviceUsr(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, invFile, errPwrDown, errNotEmpty, resOk
 For XMegas only. Only the UserRow becomes erased.

procedure ProgFlash(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, resOk

This function starts the separate programming of the Flash. If the result “res“ = resOk the operation started
successful. If all relevant UPP1-X programmer have been startet the application must continously call the
function “GetProgStatus“ which polls all active ports to get the state of all startet UPPs.
Not applicable with encrypted files!

procedure ProgEEprom(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, resOk

This function starts the separate programming of the EEprom. If the result “res“ = resOk the operation
started successful. If all relevant UPP1-X programmer have been startet the application must continously
call the function “GetProgStatus“ which polls all active ports to get the state of all startet UPPs.
Not applicable with encrypted files!

procedure ProgUsrRow(Channel: Integer; var res : integer; resStr : PChar); // XMega only
// res = progBusy, noProg, resOk rest of states must be done with "GetProgStatus"

This function starts the separate programming of the UserRow. No erase is done. If the result “res“ = resOk
the operation started successful. If all relevant UPP1-X programmer have been startet the application must
continously call the function “GetProgStatus“ which polls all active ports to get the state of all startet UPPs.
Not applicable with encrypted files!

procedure ProgFuses(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, dwnLoadErr, errPwrDown, errSignature, errProtected, resOk

This function starts the separate programming of the Fusebits. If the result “res“ = resOk the operation was
successful.
Not applicable with encrypted files!

procedure ProgLockBits(Channel: Integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, dwnLoadErr, errPwrDown, errSignature, errProtected, resOk

This function starts the separate programming of the Lockbits. If the result “res“ = resOk the operation was
successful.
Not applicable with encrypted files!

procedure VerifyDevice(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk

This function starts a chip verify cycle. If the result “res“ = resOk the operation started successful. If all
relevant UPP1-X programmer have been startet the application must continously call the function
“GetProgStatus“ which polls all active ports to get the state of all startet UPPs. This is only a support
function which is not necessary after programming a chip because a programming cycle always includes a
verify. It’s not applicable if lockbits are activated in the chip.

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 11/26

procedure VerifyFlashOnly(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk

This function starts a flash only verify cycle. If the result “res“ = resOk the operation started successful. If
all relevant UPP1-X programmer have been startet the application must continously call the function
“GetProgStatus“ which polls all active ports to get the state of all startet UPPs. This is only a support
function which is not necessary after programming a chip because a programming cycle always includes a
verify. It’s only applicable if no lockbits were set.

procedure VerifyEEpromOnly(Channel: Integer; var res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk

This function starts a EEprom only verify cycle. If the result “res“ = resOk the operation started successful.
If all relevant UPP1-X programmer have been startet the application must continously call the function
“GetProgStatus“ which polls all active ports to get the state of all startet UPPs. This is only a support
function which is not necessary after programming a chip because a programming cycle always includes a
verify. It’s only applicable if no lockbits were set.

procedure VerifyUsrRowOnly(Channel: Integer; var res : integer; resStr : Pchar); // XMega only
// res = progBusy, noProg, resOk

This function starts a UserRow only verify cycle. If the result “res“ = resOk the operation started
successful. If all relevant UPP1-X programmer have been startet the application must continously call the
function “GetProgStatus“ which polls all active ports to get the state of all startet UPPs. This is only a
support function which is not necessary after programming a chip because a programming cycle always
includes a verify. It’s only applicable if no lockbits were set.

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 12/26

Support functions

procedure GetProgStatus(Channel: integer; var res : integer; resStr : Pchar);
// res = resNone, limitExc, eraChip, prgEEp, verifyEEp, prgFlash, verifyFlash, progDone, errPwrDown,
// errSignature, errProtected, errNotEmpty, errVerify

This function is the main working function. After sending the program start command “ProgDevice“ the
Host must continously poll all started programmers with the function “GetProgStatus“. The DLL itself also
continously receives status informations from the started programmers. These informationen are
temporarily stored by the DLL. This means that the DLL always presents the latest (newest) state of the
programmers.

If these informations are not read by the Host it will be replaced by new incoming infos from the
programmers. This is no essential lost of informations because in most cases the last and final state of a
programmer is important.

They come in the following order:
1. eraChip : the CPU will be erased
2. prgFlash : the Flash will be programmed
3. prgUsr : the UserRow will be programmed if enabled. // XMega only
4. prgEEp : the EEprom will be programmed if enabled.
5. progDone : all done ok, inclusive verify Flash (and EEprom).

Also the special functions ProgFlash, ProgEEprom, VerifyDevice, VeriFyEEpromOnly and
VerifyFlashOnly must be contiunued and finished with the function GetProgStatus. Each started
programmer must be polled continously. These results can be expected:
1. prgFlash : currently programming the Flash
2. prgEEp : currently programming the EEprom
3. verifyFlash : currently verifying the Flash
4. verifyEEp : currently verifying the EEprom
5. verifyUsr : currently verifying the UserRow // XMega only
6. progDone oder resOk

Because an error can appear at each point the error state will be the last state which can be read. In other
words: each active/started programmer must be polled until either a “progDone“ or an error code appears.
Only then all programmers had finished their jobs and can accept a new one.

procedure CheckDevice(Channel: Integer; var res : integer; resStr : Pchar);
// res = resNone, progBusy, noProg, errPwrDown, errSignature, errNotEmpty, errProtected

This function can be called after a successful programming to check whether the Chip is locked (protected
against further read out). But this is not necessary in most cases.

procedure GetTargVolt(Channel: integer; var Volt, res : integer; resStr : Pchar);
// res = progBusy, noProg, resOk

If successful this function returns the target (CPU) voltage in the parameter “Volt“ in 10mV steps.

procedure ReadBackChipF(Channel : Integer; Block : Pointer; source : Integer; var res : integer;
 resStr : PChar);
procedure ReadBackChipE(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;
 resStr : PChar);
procedure ReadBackChipU(Channel : Integer; Block : Pointer; source : Integer; var res : integer;
 resStr : PChar); // XMega only
// res = progBusy, noProg, MemError, errPwrDown, errSignature, errProtected, dwnLoadErr, progProtected,
// dwnLoadErrE, resOk

With these three functions the actual Flash, EEprom or UserRow content of the Target CPU can be read
back, on condition that the project file is not encrypted and the CPU is not protected.
Block points to a 256byte sized memory block in the application. Source is the readback address in the
chip, where “source” must always point to a 256byte boundary adddress. For example 0, 256, 512, etc.
With the Flash and UserRow always 256 bytes are transfered. For example if “source“ is 1024 then 256
bytes are uploaded beginning with the memory location 1024.

Not applicable with encrypted files!

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 13/26

Chip and File Manipulation

The DLL supports several ways to manipulate or change parts of a project/file in an UPP. Similar is true for the
Flash, EEprom and UserRow area of the connected CPU.

If the concerning project file is encrypted a manipulation of the file or the chip is disabled.
Chips with activated LockBits of course can not be manipulated.

procedure DownProgBlockF(Channel : Integer; Block : Pointer; dest : Integer; var res : integer; resStr : PChar);
procedure DownProgBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);
procedure DownProgBlockU(Channel : Integer; Block : Pointer; dest : Integer; var res : integer;
 resStr : PChar); // XMega only
// res = progBusy, noProg, MemError, errPwrDown, errSignature, errProtected, dwnLoadErr, progProtected,
// resOk

The purpose of thse functions is to provide an online manipulation of the actual Flash or EEprom content of
the connected chip. In case of the flash a reprogramming only makes sense in areas where the relevant
memory locations contain $FF, which means unprogrammed bytes.
For technical reasons and also to be able to handle all CPU types always a 256 byte Flash/UserRow block
must be used. In addition this block must start on a 256 byte boundary. But this is not really a problem.
There are several ways to build such a Flash block.
1. The application fills a memory block of 256 bytes with $FF. Then overwrite the desired locations with

the desired values. Then call the function DownProgBlockF
2. Load the memory block of 256 bytes with the origin content out of the project file with

“UpFileBlockF”. Then overwrite the desired locations with the desired values. Then call the function
DownProgBlockF.

3. Load the memory block of 256 bytes with the origin content out of the Flash of the CPU with
“ReadBackChipF”. Then overwrite the desired locations with the desired values. Then call the function
DownProgBlockF.

If a $FF filled block is used then only these memory location become changed which content now
are <> $FF. If the origin file or the chip content is used all memory location become reprogrammed but
only the altereated are changed. Attention! It must be clear that in all cases bits can only be programmed to
zero “0” but never to “1“.

If the EEprom content must be changed there are no limitations because EEprom cells always can be
changed and overwritten with any values. But consider that there are also pages. So the destination address
must always be a multiple of the EEprom page size (8..32, dependend of the AVR type).

The parameter Block is a pointer which must point to a 256 byte sized source buffer in the application.
Dest is the target address of a 256 byte block in the Flash, EEprom or UserRow memory of the CPU. It
always must start at a 256 byte page (boundary).

The CPU must be already programmed (Flash and Fuses) and must not be protected. The concerning
project file must not be encrypted.

Not applicable with encrypted files!

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 14/26

procedure DownFileBlockF(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);

procedure DownFileBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);

procedure DownFileBlockU(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);
procedure UpFileBlockF(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;

 resStr : PChar);
procedure UpFileBlockE(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;

 resStr : PChar);
procedure UpFileBlockU(Channel : Integer; Block : Pointer; source : Integer; var res : integer;

 resStr : PChar); // XMega only
// res = progBusy, noProg, MemError, progProtected, dwnLoadErrEF, dwnLoadErrE, resOk

These four functions support the upload and the manipulation of the actual Flash and EEprom content of a
project file. So it is possible to change parts of the firmware or EEprom part of a file. The block size
“count“ should not exceed 256 bytes. The application is responsible for the correct blocksize and the target
address “dest“ or source address “source“. A check is not done. These functions return an error if the file is
encrypted. An enlargement of the Flash, EEprom or UserRow part of the file must not happen otherwise the
file becomes corrupted!

Not applicable with encrypted files!

procedure GetFuses(Channel : integer; selfuse : char; var fuse : integer; var res : integer; resStr : PChar);
// res = progBusy, noProg, memErr, resOk

This function reads back the LockBits, FuseBits or Calibration bytes out of the connected CPU.
SelFuse selects the desired fuse. After the excution Fuse returns the value found. If successful resStr
contains this value as a string. The char parameter SelFuse can consist of these values:

 L = LockBits
 F = Fuse0
 H = Fuse1
 E = Fuse2
 I = Fuse3
 J = Fuse4
 K = Fuse5
 0 = OscCal byte 0
 1 = OscCal byte 1
 2 = OscCal byte 2
 3 = OscCal byte 2

Akthough this function supports all fuse types (L, F, H, E, I, J, K, 0, 1, 2, 3) it makes no sense to upload
fuses which are not present in the actual CPU.

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 15/26

Serial Number Support

The chip manipulations described above like “DownProgBlockF“ can only be used after the programming of the
Fusebits, the Flash and the EEprom and before programming the LockBits. Because of this a chip programming
must be done step by step controlled by the application. It must be clear that this lasts longer as the “ProgDevice“
function which does all the job in a single action. Furthermore the Flash bits can only be programmed to “0“ but
never to “1“. If the project file is encrypted the above functions can not be used.

And here is the purpose of the following functions. The data downloaded by these functions is used within the
“ProgDevice“ function to replace the origin data loaded from the file. In order to avoid “trojan horses“ the memory
areas and the download count is limited to 32bytes.

procedure DownOverBlockF(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);
// res = progBusy, noProg, errParm, dwnLoadErr, resOk

procedure DownOverBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar);
// res = progBusy, noProg, errParm, dwnLoadErr, resOk

procedure DownOverBlockU(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar); // XMega only
// res = progBusy, noProg, errParm, dwnLoadErr, resOk

The parameter Block must point to the source in the application. Dest defines the target address of this block in the
Flash or EEprom memory of the chip. Count defines the block size (max. 32). The block must not cross a 256 byte
boundary. Invalid values are Dest = 250, count = 20. The block crosses a 256 byte boundary.

The functions load a block with upto 32bytes into the UPP1-X programmer. The standard programmer function
ProgDevice then replaces the original file data with this block if the address Dest is reached. This is true for both the
Flash and the Eeprom if a corresponding block exists. It is also possible to make a new download after each
succesful programming operation. So the application can build a unique serial number for each device.

The download stays valid and active until a OpenAfile is executed which deletes the blocks.
So the standard procedure is:

1. open the desired file/project
2. download the Flash or EEprom block
3. program the device
4. replace the device by a new one
5. continue with item 2 or item 1

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 16/26

Examples and sources
This system contains the WIN32 DLL UPP1X_DLL.dll, a comprehensive Delphi/Pascal program and a Visual
Basic and a C++ program. All sources of these programs are also included.

The experienced programmer should have not much difficulties to build an own specialized program which fulfills
the particular needs.

Import of the DLL into Delphi

type
 tProgResult = (resNone, resOk, progDone, noProg, progFound, progBusy, progDefect, progIdle,
 progComErr, progTimeOutErr, PwrDownErr, PwrSupplyErr, SignatureErr,
 invPassword, limitExc, eraChip, eraFlash, eraEEp, eraUsrRow, ProtectedErr, NotEmptyErr,
 prgFlash, prgEEp, prgUsrRow, verifyFlash, verifyEEp, verifyUsrRow, VerifyErr,

dwnLoading, ParmErr, dwnLoadErrF, dwnLoadErrE, dwnLoadErrU, invFile, invFName,
FileExist, FileNotFound, FileErr, FileDwnErr, MMCok, MMCnoMedia, MMCmissing,
MMCinitFailed, MMCresetFailed, MMCcheckFailed, MMCnoProg, MMCprogBusy);

procedure AbortAll; stdcall; external ‘UPP1X_DLL.dll';

procedure GetProgIDs (var res : integer; resStr : Pchar); external ‘UPP1X_DLL.dll'

procedure InitChannel (Channel : integer; var res : integer; resStr : Pchar); external ‘UPP1X_DLL.dll'

procedure DeleteAfile(Channel: Integer; FileName: PChar; var res : integer; resStr : Pchar); stdcall;
 external ‘UPP1X_DLL.dll';

procedure GetFileNames(Channel : integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure CheckProgrammer(Channel: integer; var res : integer; resStr : Pchar); stdcall;

external ‘UPP1X_DLL.dll';

procedure CheckAfile(Channel : integer; FileName: PChar; var res : integer; resStr : Pchar); stdcall;
 external ‘UPP1X_DLL.dll';

procedure OpenAfile(Channel : integer; FileName: PChar; var res : integer; resStr : Pchar); stdcall;
 external ‘UPP1X_DLL.dll';

procedure GetProjParams(Channel : integer; FileName: PChar; var res : integer; resStr : Pchar); stdcall;

external ‘UPP1X_DLL.dll';

procedure GetFileState(Channel : integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure CloseAfile(Channel : integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure DownloadFile(Channel : Integer; FileName: PChar; var res : integer; resStr : Pchar); stdcall;

external ‘UPP1X_DLL.dll';

procedure GetTargVolt(Channel: integer; var Volt, res : integer; resStr : Pchar); stdcall;
 external ‘UPP1X_DLL.dll';

procedure ProgDevice(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure EraseDevice(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure EraseDeviceX(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure EraseDeviceUsr(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure ProgFlash(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 17/26

procedure ProgEEprom(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure ProgUsrRow(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.DLL';

procedure ProgFuses(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure ProgLockBits(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure VerifyDevice(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure VerifyFlashOnly(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure VerifyEEpromOnly(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure VerifyUsrRowOnly(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.DLL';

procedure GetProgStatus(Channel: integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure ReleaseTarget(Channel: integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure ClosePort(Channel: integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure CheckDevice(Channel: Integer; var res : integer; resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';

procedure ReadBackChipF(Channel : Integer; Block : Pointer; source : Integer; var res : integer;
 resStr : PChar); stdcall; external ‘UPP1X_DLL.dll';
procedure ReadBackChipE(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;
 resStr : PChar); stdcall; external ‘UPP1X_DLL.dll';
procedure ReadBackChipU(Channel : Integer; Block : Pointer; source : Integer; var res : integer;
 resStr : PChar); stdcall; external ‘UPP1X_DLL.DLL';

procedure DownProgBlockF(Channel : Integer; Block : Pointer; dest : Integer; var res : integer; resStr : PChar);

 stdcall; external ‘UPP1X_DLL.dll';
procedure DownProgBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar); stdcall; external ‘UPP1X_DLL.dll';
procedure DownProgBlockU(Channel : Integer; Block : Pointer; dest : Integer; var res : integer;
 resStr : PChar); stdcall; external ‘UPP1X_DLL.DLL';

procedure DownOverBlockF(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar); stdcall; external ‘UPP1X_DLL.dll';
procedure DownOverBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar); stdcall; external ‘UPP1X_DLL.dll';
procedure DownOverBlockU(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;
 resStr : PChar); stdcall; external ‘UPP1X_DLL.DLL';

procedure DownFileBlockF(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;

 resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';
procedure DownFileBlockE(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;

 resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';
procedure DownFileBlockU(Channel : Integer; Block : Pointer; dest, count : Integer; var res : integer;

 resStr : Pchar); stdcall; external ‘UPP1X_DLL.DLL';

procedure UpFileBlockF(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;
 resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';
procedure UpFileBlockE(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;
 resStr : Pchar); stdcall; external ‘UPP1X_DLL.dll';
procedure UpFileBlockU(Channel : Integer; Block : Pointer; source, count : Integer; var res : integer;
 resStr : Pchar); stdcall; external ‘UPP1X_DLL.DLL';

procedure GetFuses(Channel : integer; SelFuse : char; var Fuse : integer; var res : integer; resStr : PChar);

 stdcall; external ‘UPP1X_DLL.dll';

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 18/26

Import of the DLL into Visual Basic
VB Interface

 Enum tprgResult

 resNone = 0
 resOk = 1
 progDone = 2
 noProg = 3
 progFound = 4
 progBusy = 5
 progDefect = 6
 progIdle = 7
 progComErr = 8
 progTimeOutErr = 9
 PwrDownErr = 10
 PwrSupplyErr = 11
 SignatureErr = 12
 invPassword = 13
 limitExc = 14
 eraChip = 15
 eraFlash = 16
 eraEEp = 17
 eraUsrRow = 18
 ProtectedErr = 19
 NotEmptyErr = 20
 prgFlash = 21
 prgEEp = 22
 prgUsrRow = 23
 verifyFlash = 24
 verifyEEp = 25
 verifyUsrRow = 26
 VerifyErr = 27
 dwnLoading = 28
 ParmErr = 29
 dwnLoadErrF = 30
 dwnLoadErrE = 31
 dwnLoadErrU = 32
 invFile = 33
 invFName = 34
 FileExist = 35
 FileNotFound = 36
 FileErr = 37
 FileDwnErr = 38
 MMCok = 39
 MMCprotected = 40
 MMCnoMedia = 41
 MMCmissing = 42
 MMCinitFailed = 43
 MMCresetFailed = 44
 MMCcheckFailed = 45
 MMCnoProg = 46
 MMCprogBusy = 47
 dummy = Int32.MaxValue
 End Enum

Please note: all integer are 32bit types

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 19/26

Public Declare Sub AbortAll Lib "UPP1X_DLL.dll" ()

Public Declare Sub GetProgIDs Lib "UPP1X_DLL.dll" (ByRef result As tprgResult, ByVal resString As String)

Public Declare Sub InitChannel Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef result As tprgResult,

ByVal resString As String)

Public Declare Sub GetFileNames Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef result As tprgResult,

ByVal resString As String)

Public Declare Sub OpenAfile Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByVal FileName As String,

ByRef result As tprgResult, ByVal resString As String)

Public Declare Sub CloseAfile Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef result As tprgResult,

ByVal resString As String)

Public Declare Sub GetTargVolt Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef Volt As Integer, ByRef

result As tprgResult, ByVal resString As String)

Public Declare Sub EraseDevice Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef result As tprgResult,

ByVal resString As String)

Public Declare Sub GetProgStatus Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef result As tprgResult,

ByVal resString As String)

Public Declare Sub ProgDevice Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef result As tprgResult,

ByVal resString As String)

Public Declare Sub ReleaseTarget Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef result As tprgResult,

ByVal resString As String)

 Public Declare Sub VerifyDevice Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByRef result As tprgResult,
ByVal resString As String)

 Public Declare Sub GetFuses Lib "UPP1X_DLL.dll" (ByVal channel As Integer, ByVal selfuse As Char, ByRef
fuse As Integer, ByRef result As tprgResult, ByVal resString As String)

……

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 20/26

Import of the DLL into C++
//
// UPP1-X Programmer DLL Header
//

// function call results

 enum prgResult
 {
 resNone, resOk, progDone, noProg, progFound, progBusy, progDefect, progIdle, progComErr,
 progTimeOutErr, PwrDownErr, PwrSupplyErr, SignatureErr,
 invPassword, limitExc,
 eraChip, eraFlash, eraEEp, eraUsrRow, ProtectedErr, NotEmptyErr,
 prgFlash, prgEEp, prgUsrRow,
 verifyFlash, verifyEEp, verifyUsrRow, VerifyErr,
 dwnLoading, ParmErr, dwnLoadErrF, dwnLoadErrE, dwnLoadErrU,
 invFile, invFName, FileExist, FileNotFound, FileErr, FileDwnErr,
 MMCok, MMCprotected, MMCnoMedia, MMCmissing, MMCinitFailed, MMCresetFailed,
 MMCcheckFailed, MMCnoProg, MMCprogBusy
 };

 note: all integer are 32bit types

The following list is not complete…
extern "C"
 {
 void __stdcall AbortAll (void);

 void __stdcall InitChannel (int channel, int &res, char *resStr);

 void __stdcall GetProgStatus (int channel, int &res, char *resStr);

 void __stdcall ClosePort (int channel, int &res, char *resStr);

 void __stdcall ReleaseTarget (int channel, int &res, char *resStr);

 void __stdcall OpenAfile (int channel, char *fileName, int &res, char *resStr);

 void __stdcall GetFileState (int channel, int &res, char *resStr);

 void __stdcall CloseAfile (int channel, int &res, char *resStr);

 void __stdcall DeleteAfile (int channel, char *fileName, int &res, char *resStr);

 void __stdcall GetFileNames (int channel, int &res, char *resStr);

 void __stdcall CheckAfile (int channel, char *projName, int &res, char *resStr);

 void __stdcall GetProjParams (int channel, char *projName, int &res, char *resStr);

 void __stdcall GetProgIDs (int &res, char *resStr);

 void __stdcall CheckProgrammer (int channel, int &res, char *resStr);

 void __stdcall DownloadFile (int channel, char *projname, int &res, char *resStr);

 void __stdcall GetTargVolt (int channel, int &volt, int &res, char *resStr);

 void __stdcall CheckDevice (int channel, int &res, char *resStr);

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 21/26

 void __stdcall ProgDevice (int channel, int &res, char *resStr);

 void __stdcall EraseDevice (int channel, int &res, char *resStr);

 void __stdcall VerifyDevice (int channel, int &res, char *resStr);

 void __stdcall GetFuses (int channel, char selFuse, int &fuse, int &res, char *resStr);

//
 }

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 22/26

no

yes

no

yes

DLL function
GetProgIDs

DLL function
InitChannel

DLL function
CheckProgrammer

Flow diagrams
For a better view onto the useage of the E-LAB UPP1-X DLL in the production there a three diagrams:
1. Initialization 2. Project select 3. Production.

Initialization
The UPP1-X programmers must be connected to the Host via an USB port. An USB-enabled 32bit Windows must
run on this computer. (XP/WIN7/WIN8). The DLL „UPP_DLL.dll“ must reside in the same directory where the
application program which controls the DLL and programmers is located.

The very first access to the DLL must be an AbortAll function call!
At start up of the application and AbortAll the connected programmers must be searched and mapped into
“Channels”. If a UPP1-X programmer is found via the DLL this UPP1-X gets also a hardware reset. The UPP1-X
can respond with a memory error to the application. Now the init sequence is complete.

 Program start

AbortAll

Programmer
searching

All UPP1-X
devices
found?

program exit

Programmer 1 Init
USB Port Init

UPP1-X 1
found?

Hardware Reset
Memory test
Initialization

optional

More UPP1-X
Programmer
search and
initialization

Select
project

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 23/26

DLL function
GetFileNames

DLL function
OpenAfile

Select Project

The UPP1-X programmer memory is flash based and retain all once stored project also through a power down cycle.

In order to start a programming operation a project must be selected.

Select
project

List the UPP’s file
pool

More UPP1-X
Programmer

Projekt selects
If desired

program

Choose a project
from the UPP’s file

pool

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 24/26

yes

no

error busy

All ready + ok

DLL function
GetTargVolt

DLL function
ProgDevice

DLL Function
GetProgStatus

Production
The programming cycle must be started separately for each connected UPP1-X programmer. The start function itself
results in an OK or FAIL. The reason for a fail can be a disconnected or defective UPP1-X programmer. So it’s a
good idea to check all involved programmers with the function „GetTargVolt“ for presence and idle and also the
target CPU for power-good etc.

The main programming state after the start of all programmers must polled by a general poll function. If all active
programmers have send either a „progDone“ or an error messag, the programming cycle is finished and a new one
can be started.

program

UPP1-X 1 and
Target check

Start UPP1-X 1
Programming

UPP1-X 1
or Target

error?

Error
handling

More UPP1-X
Programmer

test/start
If desired

Error
handling

UPP1-X
1..n

Busy,ready
or error?

Error
handling

Poll all UPP
 Status

 E-LAB AVR Producion Programming with DLL UPP1-X version

E-LAB AVR Programmer DLL version DOC 11.03.2015 25/26

E-LAB Computers D74906 Bad Rappenau Germany
Tel. 07268/9124-0 Fax. 07268/9124-24
WEB: www.e-lab.de mail: info@e-lab.de

www.e-lab.de
mailto:info@e-lab.de

	E-LAB
	Production Programmer System
	AVR UPP1X-DLL
	March 2014In-Circuit programming of Single Chips in mass production
	Production Programmer UPP1X-DLL
	Flash card
	File types
	DLL

	Function details
	Initialization
	Maintenance functions for files
	Encrypted files
	Packed files

	Production
	Enhanced programming
	Support functions
	Chip and File Manipulation
	Serial Number Support

	Examples and sources
	Import of the DLL into Delphi
	Import of the DLL into Visual Basic
	Import of the DLL into C++

	The following list is not complete–
	Flow diagrams
	Initialization
	Select Project
	Production
	E-LAB Computers D74906 Bad Rappenau Germany

