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Multi Tasking with E-LAB AVRco 
by Gunter Baab, revised by "Merlin" 

Basics 
 
MultiTasking and MultiTasking Operating Systems / -Compilers are extremely complex topics that are 
always controversial. Even for extremely powerful CPUs that are usually used with network servers 
there exists no "best solution" for such a design. 
Even more contentiously debated is MultiTasking with Micro Controllers and their limited resources . 
As a consequence with AVRco MultiTasking is "only" an option. 
 
In order to understand the AVRco MultiTasking and to use it in an optimal way, it is essential to 
understand the implementation at the assembler level - at least at a basic level. 
With imported MultiTasking (by Import Tasks,Import Processes) the AVRco includes the scheduler 
in the assembler code. The scheduler ensures that the independent defined modules (main, 
processes and tasks) are (virtually) executed in parallel. 
This is achieved by running each module a certain (maximum) time until the next module gets the 
CPU. Thus the scheduler becomes the main program whose job is to start and stop one module after 
another. Because the main program is now the scheduler,  the original Pascal main must be 
"degraded" to a normal module (more precisely to a process). 
 
 
Important note: 
Processes and Tasks are the modules of the Multitasking System. 
They are exclusively administered by the System. 
Even if they (may) have the structure of a subroutine you can not call them 
like you do with a standard subroutine. 
 

Processes 
 
Although a process has the formal structure of a subroutine, it works in a similar way to a main 
program with an infinite loop defined by Loop – Main Prog - EndLoop. The infinite loops of the 
processes are not explicitly programmed in the AVRco Pascal. Nevertheless, the compiler creates an 
assembler code sequence whose last command is a jump to the beginning of the sequence. 
When a process is started by the scheduler for the first time, it is (roughly speaking - see below) 
equivalent to a simple assembler jump to the beginning of the process. From then on, this process 
would work its endless loop for ever, and the scheduler would never regain control. 
 
This is where the SysTick enters the equation. 

SysTick 
 
The SysTick is a periodic timer interrupt that interrupts the active module (for example, the 
process just discussed) on a regular basis (recommendation: every 10 msec).  
For this an 8-bit timer (timer 0 or timer 2) of the controller will be used exclusively. 
The SysTick is the interrupt service routine of this interrupt. Here are, depending on the 
imported drivers (SysTimer, ADC, ...), various "system chores" performed, which are not of 
interest at this point. 
Thereafter, the control is passed to the scheduler. 
The scheduler now decides which module will continue working next. This may be the process 
just interrupted or a completely different module. This depends among others on the Priorities 
(see below). 
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As mentioned above, every process runs (with interrupts) endlessly "in a circle". However, this means 
that every process, when it regains control after an interruption, it must find its former state again, e.g. 
its registers and its stack (see below: Stack, Frame). 
This, in turn, requires each process to have its own storage area in RAM for this runtime environment.  
Before the scheduler gives back control to a process, it must restore its runtime environment or -at the 
first call- initialize it. On the other hand, if a process is interrupted, the scheduler must save its actual 
runtime environment   
(unfortunately, this is time-consuming since the ATMEL controllers only have one set of registers. 
Controllers with multiple register sets greatly simplify multitasking, since then at least the correct 
register set can be switched on quickly and easily). 
 
A process thus runs until the computing time allocated to it is used up (see below: Priorities). 
However, if a process has nothing to do right now, it would be a waste of resources. Therefore, there 
are some techniques to prevent this. For example, a process can abort itself prematurely with the 
Schedule command (and give control back to the scheduler) or even suspend itself with  
Suspend (self) (until it is reactivated with a Resume command). 
 
It is in general unpredictable how often a process runs. That would only be possible. if there were only 
processes, they would always be active and would all use the full computing time assigned to them.  
Sometimes the work to be done is very short (taking much less than a Systick for instance) and can be 
called at regular intervals, To put these into Processes would lead to excessive overheads, so Tasks 
have bee implemented. Tasks can also be used if an event needs to occur at regular intervals,  
 
 

Tasks 
 
a task is called by the scheduler at regular intervals. For example every 50ms (see: Priorities). 
Internally Tasks, are simple subroutines that end with a "Return from Subroutine" and thus return 
control to the scheduler (which started the task = called this subroutine). 
 
A "well behaving" task runs from start to end and, unlike a process, never continues its work later 
because it is never interrupted. As a result, there is only one storage area for the runtime 
environment of all tasks, which can be an enormous resource savings. 
Another result is that each task may only run shorter than one single systick. 
 
If a task runs too long, it is aborted by the systick and the scheduler starts it again from the 
beginning on the next scheduled call. Such a task will never finish its work. 
 
 

Priorities 
 
every module (every task, every process (including the main process) has a priority. The priority is an 
integer number and is set when defining the task / process. The command SetPriority can be used to 
dynamically change the priority at runtime. 
 
Examples: 
Process Proc1 (32, 32 : iData; 5, suspended);    // prio= 5, no automatic start 
Task Task1 (iData, 8, suspended);       // prio= 8, no automatic start 
 

note: 
the priority of a module and its state (suspended / resumed) are system variables that control 
the scheduler. These can be changed at any time with the corresponding functions (SetPriority, 
Suspend, Resume), regardless of whether the module or the scheduler is currently running. 
 

 
Without explicitly specifying a priority, tasks get the priority 5, processes the priority 3 and the main 
process also the priority 5. The unit of the priorities is SysTicks (see below). 
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There are important differences in the definitions of the priorities in tasks and processes: 
 

- if a task has priority n, it is called every n SysTicks. The lower the priority of a task,  
  the more frequently it is called. 
 
- if a process has the priority n, it runs a maximum of n SysTicks before the scheduler starts the    
  next process. The lower the priority of a process, the less CPU time it gets allocated. 

 
After the start of the multitasking system (see Start_Processes), the main process first gets control 
until it is interrupted by the first SysTick. In the SysTick the system chores are always done first and 
then the scheduler is started. 
 
The scheduler starts the First Task in the First SysTick (first task the compiler found = first task 
defined in the source). As soon as this task has finished its work, the currently authorized process 
runs, until it is interrupted by the 2.SysTick. 
 
The scheduler then starts the Second Task in the Second .SysTick ... then the currently authorised 
process, until it is interrupted by the third SysTick and so on. 
 
When all tasks have been started once, their priority determines when they will be called again and 
generally tasks  will not longer be started with each SysTick (see below:  "Additional Conditions").but 
only when they are due. 
 
The rest of the time (when no task is running) is used by the processes. If the main process has e.g. 
the priority = 3, then after 3 SysTicks the next process the compiler has found is authorised to run and 
gets the control for the number of SysTicks specified in its priority. 
 

Note: 
this also makes clear that the priority of a process defines its maximum computing time.  
The time for the "system chores" in the SysTick and, if applicable, the runtime for a task will 
reduce the effective process runtime. However, these times are typically unimportant compared 
to the duration of a process. 
 

Important:  a maximum of one single task can run per SysTick 

 

Additional Conditions for the Priorities 
if several tasks are active, there are important constraints on their priorities, otherwise a cyclic call is 
not possible: 
 
1: the priorities of all tasks must have a common denominator 
 
Why? Let's look at a (wrong!) Example: Task1 / Priority = 3 and Task2 / Priority = 4. 
Now it should run 
 
Task1 at tick number 1, 4, 7, 10, 13, 16, 19, 22, ... and 
Task2 at tick number 2, 6, 10, 14, 18, 22, ...  
At the 10. and 22. (etc.) SysTick actually two tasks would have to run, which is not possible. 
 
However, if you give both tasks a (correct) priority = 3  
Task1 runs at tick number 1, 4, 7, 10, 13, 16, 19, 22, ...  and  
Task2 runs at tick number 2, 5, 8, 11, 14, 17, 20, 23, ... 
This is OK. 
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But why not both tasks with priority=2? 
With this setting it should run 
 
Task1 at tick number 1, 3, 5, 7, 9, ...  and  
Task2 at tick number 2, 4, 6, 8, 10, ... 
 
Even then, no two tasks would ever have to run. 
 
But if you now imagine that both tasks use their maximum allowed computing time (= 1 SysTick!) 
almost completely, it becomes clear that there is practically no time left for the existing processes (at 
least the main process is always active). 
In the second example above with priority=3, the processes have the SysTicks 3, 6, 9, ... exclusively 
for their needs. 
From this follows the 2nd condition: 
 
2 .: the lowest priority of all tasks must be greater than the number of tasks (at least by 1) 
 
As you can see in the second example, for all processes, only every third SysTick is guaranteed to be 
reserved as run time (plus the time the tasks do not consume). 
This can, in particular if several processes are active, still result in too little computation time being 
available to them. 
To be safe the  
smallest allowed priority should be greater than "number of tasks + number of processes". 
So, for example with 2 tasks, 2 processes + main process, the smallest allowed priority should be = 6.  
 

Note: 
If several tasks had to run in one SysTick (caused by a wrong priority assignment), the order 
of the task definition (in the source) determines which task is delayed. By a "particularly 
unfortunate choice" of the priorities, one can even "achieve" that a completely "bottom 
defined" task is never called because each time a "further defined" task receives control. 
 
e.g. 
defined is  
Task1/Priority=2 and 
Task2/Priority=4. 
Later you define 
(maybe after a certain time a quick modification without analysing the given situation) 
Task3/Priority=4. 
Now should run 
Task1 at Tick number 1, 3, 5, 7, 9, 11, 13, 15 ...,    
Task2 at Tick number 2, 6, 10, 14, 18,  ... and 
Task3 at Tick number     3,     7,     11,       15, ... 
As you can see Taks3 is completely blocked by Task1 and will never run. 

 
I hope it is now clear that it is not possible to make a simple and universally valid prescription for the 
optimal allocation of priorities. There may be applications where it is possible to deviate from the 
above rules. But then you have to respect the relationships and consequences: 
 
e.g.: 

- are all Tasks guaranteed to use extremely short runtimes 
- are the Processes doing only minor short computations and need not much time 
- maybe you can guarantee that only a part of the modules is active at the same time 

etc. 
 
If necessary, you can even dynamically adjust the priorities during the runtime to the respective 
operating status of the application, thus achieving optimal performance at all times. However, the 
maintenance and expansion of such complex programs quickly tends to turn into a nightmare. 
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Start_Processes 
 
As mentioned, the scheduler is included by the definition of tasks and / or processes and called 
regularly by the SysTick. 
The SysTick is a timer interrupt. For this to work, the interrupt system must usually be started with 
EnableInts. However, if MultiTasking is implemented, Enable_Ints must be replaced by 
Start_Processes.  
 
 

Various System Functions of the Multi Tasking System 
 
the AVRco includes a variety of functions to control the behaviour of the MultiTasking system. 
These are described in the compiler manual in the chapter "Multi-Task Functions" and should be 
sufficiently explained there with the above background knowledge. 
 

..\E-LAB\DOCs\DocuCompiler.pdf  -  chapter "Multi-Task Functions"    
 
At this point, therefore, only a few chosen topics will be discussed whose meaning and possible uses 
are less obvious. 
 

Stack and Frame 
 
the stack is used in AVRco the same way as in a non-multi-tasking system: 
for storing the return addresses with subprogram calls / interrupts and for transferring variables (or 
their address) to subroutines. 
The frame is used to store local variables and, if subroutines are called, also to temporarily store 
transfer parameters. 
 
As explained above, all tasks have a common stack and frame area defined in the program header. 
 
e.g.: 

Define 
   ... 
  TaskStack = $0020, iData; 
  TaskFrame = $0010; //TaskFrame uses same data page as TaskStack ! 

 
The task with the greatest needs defines the necessary sizes of the stack and frame. 
 
Since processes are interrupted and later have to find their old environment again, each process has 
its own stack and frame area. 
For the main process, these areas are also defined in the program header. 
 
e.g.: 

Define 
   ... 
  StackSize =  $0064, iData; 
  FrameSize =  $0064, iData; 
 

For all other processes, their respective stack and frame ranges are defined individually during the 
definition: 
 Process ProcessName (StackSize, FrameSize : word; DataPage); 
Again, the same data page is used for stack and frame. 
 
 
 



- 8/12 -  AVRco Multi-Tasking 

The necessary sizes of the stack and frame areas are (independent of the MultiTasking) thus 
determined solely by the structure of the respective program modules: 
 - are subroutines used and how deep are those nested 
 - what is the need for transfer parameters? 
 - what is the need for local variables? 
 
A general recommendation is not possible. 
 
However, if stack / frame is too small, the data of other processes will be overwritten resulting in a 
system crash. Unfortunately, a constant check of the free stack/frame is with a uC system not possible 
for performance reasons  
 
The simplest way out of this dilemma is to test the program intensively in the simulator and simulate 
as many possible program constellations as possible. In the window "Processes" you can then look at 
the maximum consumption of stack / frame with the button "State". 
 
Furthermore, there are some system routines that determine the current consumption at runtime. 
These are described in the chapter "Multi-Task Functions" in the section "Stack and Frame 
Consumption" and should be sufficient to solve such problems in difficult cases. 
 

Locked Variable 
 
a problem with MultiTasking is a competing access to data 
 
Example: 
one process is currently writing a global variable (which requires some assembler instructions for more 
complex types such as integer or even float) and is interrupted by another process while writing. If the 
interrupting process then reads this variable, it is not fully updated yet and trash is read. 
 
Solutions: 
either the variable is defined "locked", which encapsulates every access in  
"DisableInts" – (Access) – "EnableInts". 
 var xyz : integer, locked; 
Disadvantage:  
this variable must not be accessed continuously (polling) because then almost always the interrupts 
are locked and the MultiTasking can not work properly anymore. 
 
Or the process prevents itself from being interrupted. This is with 
 Lock (self); 
 xyz := ... 
 Unlock (self); 
easily possible. 
Disadvantage:  
the cyclic call of tasks is possibly disturbed. 
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DeviceLock 
 
another problem is a concurrent access to the hardware. 
e.g. process A writes to the first line of a display and process B writes to the second line.  
While process A is writing it is interrupted, process B runs and the write cursor is positioned in the 
second line. Later process A regains control and ends the interrupted write - but the cursor will be 
somewhere in line 2 ==> muddle. 
In such cases, a DeviceLock (boolean variable) can be used. Both processes have to take care of the 
lock state (write only if the display is not currently locked by the other process) and apply the Device 
Lock (set / <then write> / delete). 
 
 

Pipes 
 
Pipes allow easy data exchange between individual MultiTasking modules. 
e.g. Module A receives / generates data. Module B processes these data. 
For this Module A could allocate a memory area, write the data there and Module B could read these 
data. However, this is not very efficient because module B has to be called regularly - just to check the 
existence of new data ("polling").  
A more sophisticated approach: the scheduler starts Module B only when new data are present. 
For this purpose one can define a Pipe, a memory type (FIFO), which the scheduler is aware of. 
In module B, the command WaitPipe (<pipe name>) is sufficient and the scheduler does the job of 
restarting module B only when data from module A has been stored in the pipe. 
You do not have to worry about the "fill level" of the pipe: Module A can write until everything is done 
(assuming the pipe is big enough) and module B reads until the pipe is reported to be "empty". 
 
 

Semaphore 
 
Semaphores are used to synchronize competing resources. Although these are usually used in large 
systems (with multi-kernel CPUs, multi-path data channels, etc.), they also have potential applications 
with microcontrollers. 
Semaphores are stored internally as bytes and have a value (0..255). In that regard, a DeviceLock is a 
special semaphore that can only accept two values (False / True). 
Similar to WaitPipe there is a WaitSema (<Sema-Name>). When the Semaphore is > 0, the scheduler 
activates the waiting module and decrements the Semaphore. 
 
An application could be, for example, the use of a WLAN chip with several sockets. 
It does not matter which socket a process uses so a semaphore could be used to control the release 
of sockets. Any Process that needs to transmit data issues a WaitSema and is delayed until a socket 
becomes free. 
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Call Sequence 
 
The following diagram shows the switch of tasks and processes in the MultiTasking system 
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Notes 
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