

 3-Jul-2009

BETA Release

Tutorial - Editor - Tools Manual

EEE---LLLAAABBB AAAVVVRRRcccooo
Pascal Multi-Tasking for Single Chips

Version for

AAVVRR

© Copyright 1996-2009 by E-LAB Computers

Blaise Pascal Mathematician 1623-1662

The contents of this user guide is copyright protected by E-LAB Computers.

 Autor Rolf Hofmann
 Editor Gunter Baab

E-LAB
Computers

Mikroprozessor-Technik
Industrie-Elektronik
Hard + Software
8-Bit  16-Bit  32-Bit

E-LAB Computers
Grombacherstr. 27

D74906 Bad Rappenau
Tel 07268/9124-0

Fax 07268/9124-24
http://www.e-lab.de

info@e-lab.de

Important information

Everybody tries to write Software without bugs. The emphasis is on tries, because everybody knows that
the more complex a Software is, the more likely it is to produce bugs.

We have the opinion, that this shouldn’t have to be norm, and that we do not have to live with the problems
and mistakes (although some Software giants think like that ).

If you should find any errors, we would be thankful for any information. We will try to solve any
problems as quickly as possible.

It is also a normal international agreement that the software producer does not accept liability for any costs
arising out of errors in software, unless otherwise agreed.

E-LAB Computers do not accept liability for costs resulting out of errors in the software. It is a condition of
use of this Software you agree with these terms. If you do not agree, you are not permitted to use the
software.

As we have said, before this exclusion of liability is international standard.

This user guide and the software is intellectual property from E-LAB Computers and therefore copyright
protected.

This document and the software it relates to are solely for the use of the purchaser. The purchaser is not
permitted to give give, sell or distribute these products. Distributing copies of these products to a third party
is strictly prohibited.

We like to think that you as user of the software can make money from it and therefore also expect
maintenance of the product. Illegal copies would make it impossible for us to be able to maintain this
service.

As you see it is also in the interest of you, the user, to observe the copyright.

That´s it the author

 AVRco Tools

E-LAB Computers Table of Contents - I

Table of Contents

1 Overview ..1.1

1.1 AVRco Versions...1.1
1.2 Manual Versions..1.1
1.3 Structure of the Documentation ...1.1

2 Tutorial ...2.1

2.1 Introduction ...2.1
2.2 Quick Start – Build And Test An Application - A Step-By-Step Introduction...........................2.2

2.2.1 Download, Install And Start The AVRco (Demo Version) ...2.2
2.2.2 Create Your First Projekt...2.4

2.2.2.1 Create A Program Frame..2.5
2.2.2.2 Enter The Program ...2.8
2.2.2.3 Compile And Assemble ("Make") The Program ...2.9

2.2.3 Check The Program Using The Simulator..2.10
2.2.4 Enter Some Own Messages..2.12

2.3 Build An Application Of Your Own – Take a Deeper Look...2.13
2.3.1 Create A New Project And A Program Frame..2.13
2.3.2 Enter And "Make" The Program ..2.17
2.3.3 Some Nice And Useful Feature Of The Editor..2.19
2.3.4 The Simulator – The Only Way To Success ..2.20
2.3.5 Get More Useful Informations..2.23

2.4 The Internal EEProm ...2.25
2.5 Additional Ressources: The AVRco Documentation ...2.26

2.5.1 How to Find all related Informations?...2.26
2.6 What Hardware Do You Need?..2.27

2.6.1 Some additinional hints concerning the hardware..2.28
2.7 What Do You Need To Program Your Hardware? ..2.29

2.7.1 How To Use The E-LAB Programmer (serial programmer, SPI mode)2.30
2.7.2 How To Set The Programmer Options For a New Project ..2.32

2.8 At A Glance: Multitasking ...2.35
2.9 Useful Links...2.37
2.10 Appendix..2.38

2.10.1 The AVRco Versions...2.38
2.10.2 Source File Tutor01.pas..2.38
2.10.3 The Mega8 Konfiguration Bytes ..2.41

3 Editor PED32..3.1

3.1 Overview ..3.1
3.1.1 Introduction...3.1

3.2 Projects..3.2
3.3 Controls ...3.2

 AVRco Tools

II – Table of Contents E-LAB Computers

3.4 Syntax ..3.2
3.5 Menu ..3.3

3.5.1 File Menu..3.3
3.5.2 Edit Menu ...3.3
3.5.3 Search Menu ..3.3
3.5.4 Project Menu...3.3
3.5.5 System Menu..3.3
3.5.6 IDE Menu..3.4
3.5.7 Window Menu ...3.4
3.5.8 Info Menu..3.4

3.6 Dialogs...3.4
3.6.1 Project Admin ...3.4
3.6.2 Project Options ...3.4
3.6.3 Project Info ...3.4
3.6.4 General Options..3.4
3.6.5 Macro Editor ...3.5
3.6.6 Character Table ..3.5
3.6.7 System Admin...3.5
3.6.8 File Open..3.5
3.6.9 File Save As..3.5
3.6.10 Print..3.5
3.6.11 Find ..3.5
3.6.12 Replace ..3.5
3.6.13 Goto Line..3.5
3.6.14 TabSize ..3.5

3.7 SpeedButtons..3.6
3.7.1 FileOpen...3.6
3.7.2 Save ...3.6
3.7.3 Project administration..3.6
3.7.4 Application Wizard ..3.6
3.7.5 Printer Dialog..3.6
3.7.6 Cut..3.6
3.7.7 Copy...3.6
3.7.8 Paste ..3.6
3.7.9 Find ..3.6
3.7.10 Replace ..3.6
3.7.11 Undo...3.6
3.7.12 Tile horizontal ...3.7
3.7.13 Tile vertical ...3.7
3.7.14 Cascade ...3.7
3.7.15 Split Window...3.7
3.7.16 Calculator ...3.7
3.7.17 Project Info ...3.7
3.7.18 Alphabet ...3.7
3.7.19 Make...3.7
3.7.20 Compile ..3.7
3.7.21 Link...3.7
3.7.22 Post Processor..3.8
3.7.23 Debugger..3.8
3.7.24 Simulator ..3.8
3.7.25 Assembler...3.8
3.7.26 RomSim/Prommer ..3.8
3.7.27 Tool ..3.8
3.7.28 Librarian..3.8
3.7.29 DisAssembler..3.8

3.8 State Bar ..3.8
3.9 Error window ...3.9
3.10 HotKeys and ShortCuts = Keyboard commands ...3.9

 AVRco Tools

E-LAB Computers Table of Contents - III

3.10.1 IDE and Syntax Help...3.9
3.10.2 File and window operations...3.9
3.10.3 Move caret..3.9
3.10.4 Edit ...3.9
3.10.5 Search/replace..3.10
3.10.6 Caret block commands..3.10
3.10.7 Edit block..3.10
3.10.8 Diverse ...3.10
3.10.9 Keyboard Macros..3.10

3.11 Projects..3.11
3.11.1 Working with projects ..3.11

3.11.1.1 Load Project ...3.12
3.11.1.2 Edit/New Project...3.13
3.11.1.3 Project Path..3.14
3.11.1.4 MainFile..3.14
3.11.1.5 Application Wizard..3.15
3.11.1.6 Template ..3.15
3.11.1.7 Project Options...3.15
3.11.1.8 System Options ..3.16
3.11.1.9 Project Information ...3.16

3.12 Controls ...3.17
3.12.1 What is a control? ...3.17
3.12.2 Control Edit...3.18
3.12.3 Syntax select ..3.20
3.12.4 Error File define ..3.20

3.13 Syntax ..3.21
3.13.1 Syntax edit..3.21

3.14 Editor Setup...3.23
3.14.1 Fonts, Colors, Backup and Fasthelp..3.23
3.14.2 Character table ...3.24
3.14.3 Keyboard Macros..3.25

3.15 Menus...3.26
3.15.1 File Menu..3.26

3.15.1.1 History..3.26
3.15.1.2 Insert File ...3.26
3.15.1.3 Save Block ...3.26

3.15.2 Edit Menu ...3.27
3.15.3 Search Menu ..3.27
3.15.4 Project Menu...3.27
3.15.5 System Menu..3.27
3.15.6 IDE Menu..3.28

3.15.6.1 Tabs...3.28
3.15.7 Window Menu ...3.28
3.15.8 Info Menu..3.28

3.15.8.1 Help IDE...3.29
3.15.8.2 Help Syntax..3.29
3.15.8.3 Info IDE..3.29
3.15.8.4 Info Syntax ...3.29
3.15.8.5 About... and compiler registration..3.29

4 Simulator / Debugger..4.1

4.1 Introduction ...4.1
4.2 Overview – the Desktop ..4.1

4.2.1 the Header..4.2
4.2.2 the Menubar..4.2
4.2.3 the Toolbar ...4.2
4.2.4 the Working Area ..4.3

 AVRco Tools

IV – Table of Contents E-LAB Computers

4.2.5 the Statusbar ..4.5
4.3 the Handling of the Simulator ...4.5

4.3.1 Menu Projekt...4.5
4.3.1.1 Open / Save / Save as / Print / Printer Setup / Close...4.5
4.3.1.2 Reload / Reload EEprom ..4.5

4.3.2 Menu Breakpoints ...4.6
4.3.2.1 Show list...4.6
4.3.2.2 Reset all Breakpoints..4.7
4.3.2.3 Stop after ...4.7
4.3.2.4 Stop on Schedule, Stop on TASK kill ..4.7
4.3.2.5 Memory Write Breakpoints..4.8
4.3.2.6 Test I/O ..4.10

4.3.3 Menu Watches..4.10
4.3.3.1 Add Watch..4.10
4.3.3.2 Delete all Watches..4.11
4.3.3.3 Popup Raw Display ..4.11
4.3.3.4 default Watch representation ..4.11

4.3.4 Menu Run ...4.11
4.3.4.1 Reset processor Ctrl+F2..4.11
4.3.4.2 Go F9..4.11
4.3.4.3 Goto cursor pos F4..4.12
4.3.4.4 Stop simulation F2...4.12
4.3.4.5 Step into F7...4.12
4.3.4.6 Step over F8..4.12
4.3.4.7 Step out F6..4.12
4.3.4.8 Multiple Steps Shift+F9..4.12
4.3.4.9 Animate Ctrl+F9 ..4.12
4.3.4.10 Multiple step value..4.12
4.3.4.11 Animation speed...4.12
4.3.4.12 Enable Trace ASM / Enable Trace HLL...4.13
4.3.4.13 Clear Trace buffer...4.13
4.3.4.14 Call Stack Ctrl+F3..4.13

4.3.5 Menu Extern ...4.13
4.3.5.1 Interrupts..4.13

4.3.6 Menu Search ..4.14
4.3.6.1 Show Code at.. ...4.14
4.3.6.2 Show Data at..4.14
4.3.6.3 Search Code hex pattern.. ..4.14
4.3.6.4 Search Data hex pattern.. ...4.14
4.3.6.5 Search in Source F3..4.14

4.3.7 Menu Configure ..4.14
4.3.7.1 Show Hints ...4.14
4.3.7.2 Save as default...4.14
4.3.7.3 Config with default ..4.15
4.3.7.4 COMport [ICE..Monitor] ...4.15

4.3.8 Menu Properties..4.16
4.3.8.1 Short mDelay..4.16
4.3.8.2 Fast RTC..4.16
4.3.8.3 Short Beep ...4.16

4.3.9 Menu Windows ...4.16
4.3.9.1 Toobar..4.16
4.3.9.2 Arrange icons ...4.16
4.3.9.3 Source..4.17
4.3.9.4 Work Registers...4.18
4.3.9.5 Processes ..4.19
4.3.9.6 Disassembler..4.19
4.3.9.7 Code memory...4.20
4.3.9.8 Data memory..4.20
4.3.9.9 Watches ...4.20
4.3.9.10 Ports...4.20
4.3.9.11 Peripherals ...4.20

 AVRco Tools

E-LAB Computers Table of Contents - V

4.3.9.12 view Trace..4.21
4.3.9.13 view Process states ..4.21
4.3.9.14 SysTick / Scheduler timings..4.22
4.3.9.15 Terminal I/O..4.22
4.3.9.16 ADC ...4.23
4.3.9.17 KeyBoard 4x4...4.24
4.3.9.18 KeyBoard 8x8...4.24
4.3.9.19 LCD display..4.25
4.3.9.20 LCD_M display ...4.25
4.3.9.21 7seg display ...4.25
4.3.9.22 I2C 7seg display ...4.25
4.3.9.23 14seg display ...4.26
4.3.9.24 LCD Graphic...4.26
4.3.9.25 File System ..4.27
4.3.9.26 FAT16 ..4.27
4.3.9.27 Incr Counter..4.28
4.3.9.28 Frequ Counter ..4.28
4.3.9.29 I2C PortExpand ..4.29
4.3.9.30 System Blinker ...4.29
4.3.9.31 SwitchPort ..4.29
4.3.9.32 RC5receiver ...4.30
4.3.9.33 Servos..4.30
4.3.9.34 Heap ..4.30
4.3.9.35 Stepper ..4.31

4.3.10 Menu Help ..4.31
4.4 SysTick and Scheduler timings ..4.32
4.5 Determine Frame and Stack usage with the Simulator..4.33
4.6 Frame and Stack check at runtime ...4.34

4.6.1 Extended stack and frame checks...4.34
4.7 JTAG / OWD Debugging..4.35

4.7.1 UpLoad / DownLoad ...4.35
4.7.2 Hardware Breakpoints...4.36
4.7.3 Tips and Notes for JTAG Debugging ...4.37

4.8 Compiler Switches and the Consequences..4.37
4.8.1 {$D+} {$D-} ...4.37
4.8.2 {$E+} {$E-}..4.37

5 Lookup and Interpolate ..5.1

5.1 Nonlinear functions of sensors ..5.1
5.2 Linearising ...5.1

5.2.1 System Functions: ..5.1
5.3 LookUp Table definition and import ...5.2
5.4 Creating the LookUp Table with CurveGen..5.3

5.4.1 Program start ..5.3
5.5 Properties of CurveGen...5.6

6 Source-Code-Control-System – SCCS ...6.1

6.1 Overview E-LAB Source-Code-Control-System...6.1
6.2 Strategy of the E-LAB SCCS ...6.1

6.2.1 Version store...6.2
6.2.2 Restore a previous version..6.3

6.2.2.1 Original Directory..6.4
6.2.2.2 New or different Directory ...6.4

 AVRco Tools

VI – Table of Contents E-LAB Computers

7 Flash Down Loader / Writer ...7.1
7.1.1 BootLoader Example...7.4

 AVRco Tools

E-LAB Computers Overview - 1.1

1 Overview

1.1 AVRco Versions

All AVRco Versions support all AVR Controllers with an internal RAM (for the stack). That means in
practice the whole range.

AVRco Profi Version:
The Profi Version contains all available drivers, including very complex ones like e.g. a FAT16 file system
and an extensive library for graphic LCDs.
The professional program development is furthermore assisted by the full support of Units.

AVRco Standard Version:
The Standard Version omits only the most complex drivers, and does not support units.

AVRco Demo Version:
The Demo Version supports all controllers and all drivers of the Standard Version.
The only restriction is the limitation of the generated code to max. 4 kByte size.

1.2 Manual Versions

Chapters marked with the attribute (*P*) are only available in AVRco Profi Revision.
Chapters marked with the attribute (*4*) are only available in AVRco Revision 4.

1.3 Structure of the Documentation

..\E-Lab\DOCs\DocuCompiler.pdf:
contains the Pascal language description and the enhancements compared with Standard Pascal

..\E-Lab\DOCs\DocuStdDriver.pdf:
contains the description of the drivers contained as well in the Standard, as in the Profi Version.

..E-Lab\DOCs\DocuProfiDriver.pdf:
contains the description of the drivers contained only in the Profi Version.

..E-Lab\DOCs\DocuReference.pdf:
contains a Short Reference (the the same as the online help)

..\E-Lab\DOCs\DocuTools.pdf:
contains the description of the IDE, the simulator, a tutorial etc.

..\ E-LAB\IDE\DataSheets\Release-News.txt:
lists the enhancements in chronological order.
The enhancements are documented in the above mentioned .pdf files (DocuXXX.pdf)

..\E-Lab\AVRco\Demos\ :
contains many test and demo programs

..\E-Lab\DOCs\ :
contains the documentation and further schematics and data sheets

 AVRco Tools

1.2 – Overview E-LAB Computers

 AVRco Tools

E-LAB Computers Tutorial - 2.1

2 Tutorial
by Gunter Baab

2.1 Introduction

All you need to work through this tutorial is the free Demo-Version of the AVRco.
The AVRco allows you to develop applications for all popular AVR controller types.
You can debug your software with the AVRco Simulator and check the behaviour
on a graphical screen (see the screenshots in the chapters concerning the simulator) !

If you want to go beyond the goals of this tutorial to build and program a working
micro controller circuit of yourself you need knowledge of at least four scopes:

1. the programming language Pascal in general and

 the differences, specialities and enhancements of the AVRco Pascal

2. the internal structure of the used controller type

3. the handling of the AVRco package
to create, compile and debug your program

4. more or less hardware knowledge depending on whether you build the circuit

and the programming hardware yourself or you buy commercial parts

This tutorial covers only part 3: the handling of the AVRco

Other parts are only touched.

The first chapter bescribes the installation the AVRco Demo Version.
The only restriction of the demo is the limitation to a code size of 4k.

Maybe you ask (like me at the very beginning):
OK. 4k code size. But what does that mean to a real application of my own?
What can I do with no more than 4k code size and (the High-Level-Language) Pascal?
Is this enough to scan some switches and control some LEDs – but not more?
Or is it even enough to control a LCD and a matrix keyboard?
What overhead implies the use of such a compiler?

The answer I got was not very helpfull: "don't care – the compiler is very efficient".

If you should worry about this limitation have a quick look to the chapter "Multitasking"!
This demo uses a LCD, 8 (debounced) switches, a 6-digit 7-segment display, 6 LEDs and the MultiTasking
Kernel of the AVRco and takes 85% of the available (flash-) ressources.
So it approuches the limits of the Demo.
But your first applications will seldom need this amount of drivers and every driver enables
you to do complex functions with a single call. This reduces the required space for your
own coding to a minimum (maybe some hundred bytes).

 AVRco Tools

2.2 – Tutorial E-LAB Computers

I hope, this gives you a little feeling to recognize the limits of the Demo.
If you start with small applications (maybe 2..3 drivers) the remaining program space of
the demo takes at least one weekend (or two) to be filled with reasonable code of your own.

The documentation of the AVRco can be found in C:\E-Lab\DOCs\DocuCompiler.pdf.
Especially if you are working through the 2nd example of this tutorial, I strongly recommend
to have a printout of this file. There are many cross references to the manual.

The drivers contained in the demo are documented in C:\E-Lab\DOCs\DocuStdDriver.pdf.

2.2 Quick Start – Build And Test An Application - A Step-By-Step
Introduction

If you are new to the AVRco, you should work through this chapter.
The goal is to create as fast as possible a working environment and give you a rapid impression of what the
AVRco is able to do. You do not need to enter a lot of Pascal statements. There is a pre-defined source to
be easily inserted via cut & paste.

What is the application for?
8 Keys select various messages to be displayed on a 2x16 LCD.
Keys and LCD are connected to a Mega8 controller.
The hardware is simulated using the AVRco Simulator.

2.2.1 Download, Install And Start The AVRco (Demo Version)

Download the Demo-Version of the AVRco from http://www.e-lab.de and start the AVRdemo.exe.
This self-extracting file will guide you through the installation process, as usual (1,2).

Click Install and select the desired language for the documentation.
Do not change the default target directory from C:\ to install the compiler to C:\E-Lab and click OK to create
a program group AVRco and then OK to close the message window.

Close all windows and click Start – Programs – AVRco – E-LAB PED-32 to start the the IDE
 (Integrated Development Environment). The PED32 (Programmers Editor for WIN32), that serves as a
platform to access the numerous applications of the AVRco (compiler, assembler, simulator and much more)
comes up.

notes
(1): do not worry how to get rid of the AVRco. It comes with an un-installer that removes all changes made
 to your PC.
(2): see the Appendix for the differences/restrictions of the AVRco versions

 AVRco Tools

E-LAB Computers Tutorial - 2.3

 AVRco Tools

2.4 – Tutorial E-LAB Computers

2.2.2 Create Your First Projekt

Click in the Project Administration window the New – Edit – Account tab.
In the next window

- enter Tutor01 in the Name field
- click the three dots in front of the Directory field: the Project Path window comes up
- edit the New Main-Path if not exist field according to the next screenshot

- click OK and Yes in the Confirm window that comes up
- enter the MainFile Name and select the Control

- click Save and Exit

 AVRco Tools

E-LAB Computers Tutorial - 2.5

2.2.2.1 Create A Program Frame

- click the speed button Projekt
- search (in the tab Project load/delete) for the Tutor01 project, select it and click load
- it will take some time to load the Application Wizard
- on the 1st page select mega8 and a Frequency of 8 MHz. Do not change other settings
- click repeatedly next until you see the soft driver import window that contains the LCDport
- enable the LCDport at PortD and chose 2 rows and 16 columns (cols)

note: the page number (above 4 of 14) may be different. It depends on the compiler version.

- click next until you see the soft driver import window that contains the KeyBoard

(refer to the screenshot on the next page)
- enable the import KeyBoard 4x4 check box
- select PortC and PinC as Row port or column port
- chose PortX.0 as 1.pin row or PortX.4 as 1.pin column
- chose 4 rows and 2 columns

 AVRco Tools

2.6 – Tutorial E-LAB Computers

 note: the page number (above 5 of 14) may be different. It depends on the compiler version.

- click repeatedly next until the last window

 note: the page number (above 14 of 14) may be different. It depends on the compiler version.

- click Build Application, store and finally exit
- the Project Administration is closed an the created frame is loaded into the editor

 AVRco Tools

E-LAB Computers Tutorial - 2.7

You should see now the program frame:

program Tutor01;

{ $BOOTRST $00C00} {Reset Jump to $00C00}
{$NOSHADOW}
{ $W+ Warnings} {Warnings off}

Device = mega8, VCC=5;

Import SysTick, LCDport, MatrixPort;

From System Import ;

Define
 ProcClock = 8000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0064, iData;
 FrameSize = $0064, iData;
 LCDport = PortD;
 LCDtype = 44780;
 LCDrows = 2; {rows}
 LCDcolumns = 16; {columns per line}
 MatrixRow = PortC, 0; {use PortC, start with bit0}
 MatrixCol = PinC, 4; {use PinC, start with bit4}
 MatrixType = 4, 2; {4 Rows at PortC, 2 Columns at PinC}

Implementation

{$IDATA}

{--}
{ Type Declarations }

type

{--}
{ Const Declarations }

{--}
{ Var Declarations }
{$IDATA}

{--}
{ functions }

{--}
{ Main Program }
{$IDATA}

begin

 EnableInts;
 loop

 endloop;
end Tutor01.

 AVRco Tools

2.8 – Tutorial E-LAB Computers

2.2.2.2 Enter The Program

- for your convenience there is a .txt file, that contains the program

- click the Open speed button

- change the default file type from PASCAL/ASM Source to Text

- search the file tutor01.txt in C:\E-Lab\DOCs and open it

- the text file is loaded in a 2nd window
- note the 2 tabs Tutor01 (the program frame) and C:\E-Lab\DOCs\Tutor01.txt
- mark the block starting with const (to the end-marker) and press Ctrl+c (copy)
- note the location where to copy this block (the info above the block)
- click the Tutor01 tab, to open the program frame
- position the cursor to the destination line (in theTutor01 file) and enter Ctrl+v (paste)
- return to the text file and copy the 2nd and 3rd block to the correct locations
- right-click the C:\E-Lab\DOCs\Tutor01.txt tab and select close file
- complete the type section according the following screenshot

 (enter the line starting with t_KeySet)
- note: the "of" is a keyword. The editor shows keywords automatically in bold style
- make sure to enter the line exactly as shown and do not forget the semicolon ";"

 (the number of blanks does not matter)

 AVRco Tools

E-LAB Computers Tutorial - 2.9

2.2.2.3 Compile And Assemble ("Make") The Program

- click the make speed button to compile and assemble the program
- if you hear, after a short while, a beep and see the sand-glass disappear, your

program was succesfully compiled and assembled. Continue with the next chapter!

- if you hear a "chord" and an error window comes up, there is still something wrong

if you got errors:

- click OK to close the error window

- do not try to ignore an error. The compiler/assembler has not yet created the necessary

files to continue

- look at the (first) yellow highlighted line. The (first) error is in this line or above.
Note that the compiler is not always able to locate the exact position of an error.
Once more: the error is frequently located one ore more lines above!

- do not try to correct several errors at the same time!
It is not unusual, that one error produces several error messages

- very often there are spelling errors or forgotten semicolons

- try –step by step- to correct the error(s) and "make" the program again

- if you do not succeed print the source file and the tutor.txt file.
 Check the blocks and their location

- you should absolutely try to correct the errors by yourself!

 Even if this takes a lot of tries and some time!
This is a typical challange of software development and you need these
experiences for your own projects

when all else fails:
make a printout of the "tutor01.pas" part of the appendix and compare it with
your source. Take special care on the blocks that you copied:
- are these blocks complete ?
- are they at the correct location?
- is the "type" block OK?

the last rescue
delete the whole content of the source file and insert a copy of the corresponding
part of the appendix via cut&paste

 AVRco Tools

2.10 – Tutorial E-LAB Computers

2.2.3 Check The Program Using The Simulator

- start the simulator with the speed button
- the simulator comes up with a lot of open windows.

As we do not want to debug the program (in this example), we do not need any
of these windows

- close all windows exept Main[] that contains the source code you already know
- press Alt+w to open the Windows menu
- your screen should look like the next screenshot

- select the KeyBoard 4x4
- press Alt+w again and select the LCD Display
- position the windows according the next screenshot
- click some keys and notice how to switch one or more on and off
- switch F1/Key1 and F5/Key5 on, all others off

 AVRco Tools

E-LAB Computers Tutorial - 2.11

- press the run key and watch the LCD simulation
- switch both keys (Key1 and Key5) off and try the other keys (only one active key per row!)
- look what happens if more then one key per row is depressed
- increase the size of the Main[] window and scroll to the Const Declarations
- play with the keys and note the relationship between the keys, the display and the source file

 AVRco Tools

2.12 – Tutorial E-LAB Computers

2.2.4 Enter Some Own Messages

- close the simulator and you are back in the editor
- scroll to the definitions of the 2nd display line starting with

 (' ',
 ' the 2nd Line ',

- note:

- each message is enclosed in apostrophs: ' xxxxxx '
- the first message contains 16 blanks and is used to clear the display line
- the following 4 messages relate to Key5 ... Key8
- the last message is displayed if more then one key per line is depressed
- the length of all messages is exactly 16 characters to make sure, that a long

message is completely overwritten by a short one

- edit one line and enter a message of your own
- still be careful ! Do not change too much !
- I recommend to keep the fixed line length of 16 for this try
- "make" the program as explained above and correct any errors
- start the simulator again and run it (press F9)
- note that the simulator remembers the number, size and position of your windows

- return to the editor, enter an intentional error (e.g. "forget" (delete) an apostrophe)

 and compile the program to see how the compiler displays error messages
- correct the error and compile again

- mix shorter and longer messages (than 16) and check the behaviour of the program

- if you end up with errors, that you are not (yet) able to correct, see above: "if you got errors"

 AVRco Tools

E-LAB Computers Tutorial - 2.13

2.3 Build An Application Of Your Own – Take a Deeper Look

This chapter should encourage you to program and verify a very simple
application for a real hardware of your own. The main intention is to demonstrate
how to create new projects and use some important functions of the IDE.
Furthermore, you should get a deeper understanding of the Simulator features
that help you to find logical erors in your software.

What is the application for?
4 LEDs are used to display several patterns. The patterns are selected with a switch.
The switch and the LEDs are connected to a Mega8 controller: the switch is connected
to PortD-0, the LEDs to PortC-0 ... PortC-3.
To minimize the hardware requirements, the internal oszillator of the Mega8 is used (at 1 MHz).
This is the default setting of a new controller and you do not need to change any
fuse bytes. (1)
In this chapter the hardware is simulated using the AVRco Simulator.
In following chapters you will find all you need to build a real hardware and download the
program to it.

2.3.1 Create A New Project And A Program Frame

If you are insecure about the proceeding refer to the correspondig parts above and have a look
at the screenshots!

Start the PED32.exe. Note that the editor remembers your last project and open file(s)
and comes up with Tutor01 loaded

There are several ways to create a new project:

 e.g. the speed button project

the menu File – New Project
 the menu Project – New Project
 a right-click on the tab Tutor01 and selection of Load Project
 and probably more ...

No matter what way you use – the Project Administration comes up (2)

in the tab New – Edit - Account window enter

Name: Tutor02
Directory: C:\E-LAB\Projects\
MainFile: Tutor02.pas
Control: AVRpas (3)

Click save and exit to start the Application Wizard

notes:
(1): for more informations about the fuse bytes download the Mega8 manual (see links near the end of the

tutorial). Be careful and do not play around with the fuse bytes! There are some bits that lock the
controller and prevent a further programming!

(2): use the Project Administration whenever you want to load / create / delete / import a project.
(3): for more informations about "Controls" and "Projects" see the chapter "PED32" !

 AVRco Tools

2.14 – Tutorial E-LAB Computers

The Application Wizard is used to create a basic program frame for your Pascal source file.
There are a number of pages that allow you to specify your system and select the desired
features and options like the used data types, the on chip options and additional drivers you
want to use. Furthermore, you may define the I/O-ports you need.
The more informations you specify the more complete is the created frame. The wizard
creates the statements to import the drivers, the necessary defines, the initalization of the
ports and a location for the main program.

Important:

use always the Project Administration to create a new application!
You can not create a new application by starting the Application Wizard!

As far as the AVRco can not find the main program file it starts the Wizard automatically.
A manual start of the Wizard is only for special purposes and usually never needed.

In this tutorial it is by far not possible to cover all items. I will describe only the needed parts.
All features are by default disabled. So you can concentrate on the needed ones and enable
them selectively.
Do not worry if you forgot something to specify or made a mistake:
the wizard is "only" an aid and you can add, delete and modify the concerning parts later
with the editor.

Select the mega8 and a Frequency of 1 MHz. Leave the other settings at default (1)
click next.

The following windows depend on the compiler version: the functions of the AVRco are constantly extended
and the number of pages increases. Actually the 2nd window is "System and Types Import". These items are
explained in the AVRco Manual.
The 3rd window is "OnChip driver import I". At the time all "OnCip drivers" fit on one page. Depending
on the the future development of the contollers and the available drivers there will –maybe- soon a further
page "OnChip driver import II" be inserted. These items are covered in the AVRco- and the controller
manual.

Do the next input in the soft driver import page containing the Switch Port 1:
select PinD and edit the Edge Mask according to the following screenshot

notes:
(1): some options are grayed out, depending on the builtin features of the selected processor type and the
 selected options. This is also true for the following pages

 AVRco Tools

E-LAB Computers Tutorial - 2.15

The next pages are called special driver import. The description of these drivers
can be found in the "DocuStdDriver" manual
click repeatedly next until the Port A..C init window
change the Data Direction and Pullup or Output val of Bit 0 to Bit 3 of Port C

 AVRco Tools

2.16 – Tutorial E-LAB Computers

click next to the Port D..F init window and edit Port D Bit 0 as follows

The meaning of the Data Direction and Pullup or Output val entries can be found in the
controller manual.

Click repeatedly next until the last page of the Application Wizard
Click Build Application, Store and Exit

You are should now be in the editor with the new program frame for Tutor02 loaded.

press Ctrl+F9 to "make" (compile and assemble) the program frame.
This should not produce any errors

 AVRco Tools

E-LAB Computers Tutorial - 2.17

2.3.2 Enter And "Make" The Program

Enter the definitions for the constant "pattern", the variable "sel" and the main program
between the keywords loop and endloop according the following listing.
Note that most of the program is done by the Application Wizard. You have to complete
only the blue lines.

Enter the programm step by step!
Start with the "const" block and "make" the program again. Correct any errors before
proceeding.
Continue with the "var" definition and let the compiler check the syntax (press Ctrl+F9).
The next step should be the bold blue block below the keyword loop.
The last lines can be entered (and checked) one by onother.

Remember that the compiler is frequently not able to locate the exact location of an error.
If you change too much at once it may be hard to find the error(s).

Do not try to correct several errors at once (unless the same type at the same location,
e.g. several forgotten commas). Mostly your statements behind the first error are mis-
intepreted by the compiler.
If you got several errors a click on any error message moves the cursor to the related
line in the source file.

If the "make" succeeds try the following:

- remove the braket at the end of { Const Declarations }
- "make" the programm and notice the error location the compiler assumes
- do not forget to correct your source again

You see: the less you change (or add) at once the easier is the debugging.

program Tutor02;

{ $BOOTRST $00C00} {Reset Jump to $00C00}
{$NOSHADOW}
{ $W+ Warnings} {Warnings off}

Device = mega8, VCC = 5;

Import SysTick, SwitchPort1;

From System Import;

Define
 ProcClock = 1000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0064, iData;
 FrameSize = $0064, iData;
 SwitchPort1 = PinD, $01;
 PolarityP1 = $00; // polarity

 AVRco Tools

2.18 – Tutorial E-LAB Computers

Implementation

{$IDATA}

{--}
{ Type Declarations }

type

{--}
{ Const Declarations }

const
 pattern : array [0..3] of byte =
 (
 %00000000,
 %11000011,
 %10100101,
 %10010110);

{--}
{ Var Declarations }
{$IDATA}

var
 sel : byte;

{--}
{ functions }

procedure InitPorts;
begin
 PortC:= %00001111;
 DDRC:= %00001111;
 PortD:= %00000001;
end InitPorts;

{--}
{ Main Program }
{$IDATA}

begin
 InitPorts;

 EnableInts;

 loop

 if Inp_Raise1(0)
 then
 inc (sel);
 sel := sel mod 4;
 endif;

 PortC := not (Pattern[sel] shr 4);
 mDelay(250);
 PortC := not (Pattern[sel] and $0F);
 mDelay(250);

 endloop;

end Tutor02.

 AVRco Tools

E-LAB Computers Tutorial - 2.19

2.3.3 Some Nice And Useful Feature Of The Editor

- click on the left pane (in the editor) the Project tab and expand all items

- double click sel and the procedures. The cursor moves at once to the corresponding
definition. Especially in large source files this function is very useful.

- position the cursor on a keyword (e.g. behind the "c" of the above "procedure InitPorts;")
- press F1. Note the possiblity to copy the examples via the clipboard to your source.

- destroy the formatting of some lines by deleting leading blanks and "make" the source

e.g:

 procedure InitPorts;
 begin
 PortC:=%00001111;
 DDRC:=%00001111;
 PortD:= %00000001;
 end InitPorts;

- click the beautifier speed button

- position the cursor behind the "end Tutor02." - line

 (all lines below this statement are ignored by the compiler. This is a save place to
 play around with the editor).
 enter the first characters of a statement, e.g. md
 press Ctrl + <blank> and <enter> to accept the mDelay procedure

- t ry to enter a single character and press Ctrl + <blank>

- press Shift + Ctrl + p. This is a keyboard macro and creates an empty frame for

 a procedure.

- open the menu IDE – Edit Keyboard macros to see all predefined macros

- remove all test lines and "make" the program again

 AVRco Tools

2.20 – Tutorial E-LAB Computers

2.3.4 The Simulator – The Only Way To Success

if the "make" was successful open the simulator
to have a better survey close all windows but main[], Global Watches and Ports
enable the SwitchPort in the Windows menu
select the PortC tab at the Ports windows. Arrange and size the windows

press once F7 to execute a single step (see the menu Run and notice the 3 speed buttons
for single stepping)

This executes the initialization of the variables and the imported drivers and places the cursor
on the first line of your program: the call of the procedure InitPorts.

- to step through this procedure press F7
 - execute the next command: PortC:= %00001111; (use again F7)
- watch the 1st line in the Ports window (make sure, you have selected the PortC tab)

 AVRco Tools

E-LAB Computers Tutorial - 2.21

- execute the next command and watch how the register DDR C changes (the 3rd line)
- as the next command changes a register of PortD, click the PortD tab in the Ports window
- execute the command and press twice F7. You are again in the main program at the 2nd

line: EnableInts;
- before you proceed to step through the program play with the switches in the SwitchPorts

window and watch the display of Pin D. Note that an open switch is displayd as "1" and
a closed as "0"

- if you missed a thing you can easily start over by Reset processor
- try it: Reset the processor and execute this time the InitPorts procedure with F8

 (in a single step)

- position all switches to "off" and select the PortC tab before you continue

- press repeatedly F7 and watch the program loop

- remember: we will connect 4 LEDs to Port C0 .. Port C3. These port pins

stay at "1" while the program loops. A "1" means: the LED is off !
 Hold F7 depressed (to constantly loop) while watching the Ports window

- note that the if-statement never becomes true and the statements inside the

body of the if-statement are never executed

- the variable sel is used to select the display pattern. What is its value?
Search for one occurence of the variable and double click it. This opens a
window to edit the variable or Add it to WatchList. Click Add to WatchList and
close the window.

- note the variable in the Global Watches window while you loop through the program

- click the blue circle in front of the line inc (sel); to set a breakpoint

- press F9 to (free) run the simulator. Note the clock icon and the grayed out speedbuttons.
The program is now running until you stop it or the program flow reaches a breakpoint

 AVRco Tools

2.22 – Tutorial E-LAB Computers

- simulate a key hit by positioning the Switch1.0 to on and back to off (not too fast!)

- the if-satement becomes true, the program flow reaches the breakpoint and the program stops

- continue with one step (F7) and see the new value of the variable sel

- hold F7 depressed and watch Port C: the first alternating pattern is displayed

- repeat the last steps (F9, key hit, F7) and watch the next pattern(s)

- stop the simulator (if it is running) and remove the above breakpoint by

clicking on it.

 - press Ctrl+F9 to start the Animate function or use the speed button

- play with the switches. Note that only Switch1.0 changes the pattern.
The simulated controller is running at a very low speed to make the changes
visible. As the SwitchPort is debounced it takes some time (some processor clock
cycles) to accept the switch as on or off.

 - stop the simulator (if it is running) and position the cursor at the line inc (sel);

 in the source window.
 Press F4 Goto cursor pos or the speedbutton and simulate a key hit

The simulator is an undispensable part of the AVRco and not only nice-to-have!
No first version of any program will ever run as desired. And if, nevertheless, it does, be twice
as suspicious – the experience tells that the bugs exist but are well hidden.

The above covered techniques should be sufficient to debug many simple programs.
If you start using more complex functions like interrupts or MuliTasking there are a lot of more
useful features in the simulator. Most of them are self-explaining if you understood the concerning
background: e.g. the use of the internal EEProm.
Other functions, as the debugging on assembly level, should rarely be necessary.

Unfortunately the builtin help of the simulator is not yet available.
If you experience heavy problems follow the guidelines in the chapter "Additional Ressources: The AVRco
Documentation".

 AVRco Tools

E-LAB Computers Tutorial - 2.23

2.3.5 Get More Useful Informations

- in the editor choose Project – Project Informations or click to open the following window

One handicap of the microcontrollers is the limited amount of ressources.
Use the above function to get an overview of the used ressources:

- Flash

- the program memory
- you see an available size of 8kB. This is true for the Mega8 controller. But keep in mind
 that the AVRco-Demo is restricted to 4kB
- pay special attention on the Used entry: including all system imports Tutor02 needs only
 about 1kB. There are still 3kB available for your program (and flash-stored constants) (1)

notes:
(1): be aware that the AVRco includes only the necessary parts of a system library:
 e.g.: if you import "float" and use only a float multiply, the (assembly) subroutine for float divison is not I
 ncluded!
 Check it out when you have finished the tutorial:
 try a := a * 1.5; a := a / 0.5; and check the code size.
 Start over and
 try a := a * 1.5; a := a * 2.0; and check the size again.

 Open the .lst files. Scroll down to the end and compare the section "Imported Library Routines" in both
cases.

 AVRco Tools

2.24 – Tutorial E-LAB Computers

- [DATA]

- the processor registers (1)
- is (actually) not important. Only for advanced programming techniques.

- [IDATA]
- the amount of Ram used for the variables (your own and variables the AVRco uses
 internally). As there are still 80% free: no reason to worry about

- [EEPROM]

- only important if you use the internal EEProm

- choose (in the editor) Info – Internet update to see your current version of the AVRco.
 Check regulary the E-LAB home page for enhanced versions and pay attention to the
 latest DocuAddOnV-x

open the symbol file C:\E-Lab\Projects\Tutor02.sym to see the symbols the AVRco has
defined. Compare them with the controller manual and note that you can address all processor registers by
their names

refer to the chapters "types – BIT" and "System Library – BIT" Processing of the "DocuCompiler"
manual to access single bits with symbolic names

e.g. to access the Carry Flag (bit 0) of the Status Register (SREG) as variable "CFlag"
you may define

var
CFlag [@SREG,0] : Bit;

 or (3)

{$PDATA}
CFlag [$5F, 0] : Bit;
{$IDATA}

notes:
(1): the amount of available processor registers depend on the inluded drivers. Use this info when your

project is nearly finished to decrease the code size and increase the speed (see the "DocuCompiler"
Manual)

(2): refer to the chapter Compiler Switches of the "DocuCompiler" manual for explanations of {$PDATA} and
{$IDATA}.

 {$PDATA} tells the compiler to address the internal processor registers.
 Make sure not to forget the {$IDATA} to address the Ram area of the controller for subsequent defines

 AVRco Tools

E-LAB Computers Tutorial - 2.25

2.4 The Internal EEProm

the internal EEProm provides a non-volatile memory area that can be accessed

either at runtime

 e.g. to store user preferences, calibration values etc. that must be available
 at next power-up

or already at compile time

 e.g. to store fixed menus, lookup tables etc.

Although any value, already known at compile time, may also be stored in the flash,
an EEProm storage can free flash memory for program code.

There are several ways to access the EEProm with the AVRco.
Refer to the dedicated chapter of the "DocoCompiler" manual! (1)

If you specify EEProm data in your source file (see {$EEPROM} compiler switch) using the StructConst
directive the AVRco creates an additional file with an .eep-extension. (2)
This file must, besides the program file for the flash memory (extension .hex), be
downloaded to the controller.

Ususally the programming sotware has the options (3)

- read / write / verify all (Flash and EEProm)

- read / write / verify Flash

- read / write / verify EEProm

- erase all (Flash and EEProm)

notes
(1): access to EEProm is by far not so straight forward as access to RAM. It needs a specific handling and
 timing.

The AVRco takes this burdon: you can treat EEProm nearly the same way as RAM, but you should be
aware that an EEProm access is much slower than a RAM access!

(2): note that you have to define any data to create this file. You may also define variables in the EEProm

area. This reserves only the necessary bytes but does not create an .eep-file. See the STRUCTCONST
statement on how to place constants in the EEProm.

(3): some programming software defaults to other extensions (e.g. .e2p for EEProm file) and you have to

change the extension before browsing to the file

 AVRco Tools

2.26 – Tutorial E-LAB Computers

2.5 Additional Ressources: The AVRco Documentation

The compiler documentation is contained in C:\E-Lab\DOCs\DocuCompiler.pdf.
The drivers are in C:\E-Lab\DOCs\DocuStdDrivers.pdf documented.
Complex drivers that are only supported with the AVRco Profi Version can be found in
C:\E-Lab\DOCs\DocuProfiDrivers.pdf
The additional programs in this manual C:\E-Lab\DOCs\DocuTools.pdf

The actual enhancements are documented in C:\E-Lab\DOCs\DocuAddOn.pdf.
The most recent DocuAddOn.pdf can also be downloaded from the E-LAB homepage.

2.5.1 How to Find all related Informations?

- the first ressource are the AVRco manuals

- new drivers are frequently published together with an example. The related files can

be found in C:\E-LAB\AVRco\Demos.

- if you have a very specific interest or problem, it can be helpful to search the C:\E-Lab
directory (including subdirectories) for files containing typical keywords

- if you do not succeed search the AVRco forum on the E-LAB home page for the keywords

- the last rescue:

poste your question in the E-LAB AVRco forum.
Although most threads are in german do not hesitate to post in english!

 AVRco Tools

E-LAB Computers Tutorial - 2.27

2.6 What Hardware Do You Need?

As mentioned above the hardware is very simple.
All you need, besides the controller, the switch and the 4 LEDs are 5 resistors and 2 capacitors.
The current consumption is far below 50mA and depends on the on/off state of the LEDs.

Note that the LEDs are connected with a command anode. A "0" at a port will switch the LED "on".
The switch is connected to GND. PD0 becomes "0" when the switch is depressed.
LEDs and switch are "active low".
By setting the correspondig Pullup or Output val bits we made sure that the initial state of the LEDs
is off and the internal pullup resistor at PD0 is activated.

If you want to setup a hardware by our own, the easiest way is the use of an breadboard.

Pay special attention on the power supply! A supply voltage above 5.5V may destroy the controller.
Should you not have the necessary hardware knowledge I recommend the use of a commercial
mini-board and power supply (see links near the end of the tutorial).
If you use a commercial circuit edit the ProcClock Define and enter the correct frequency!

 AVRco Tools

2.28 – Tutorial E-LAB Computers

2.6.1 Some additinional hints concerning the hardware

1. remember: controllers with an "internal oscillator" option (like the Mega8) are delivered
with the fuse bytes programmed to: "internal oscillator at 1 MHz". The XTAL 1/2 Pins are
at delivery defined as general purpose I/O pins.

To use an external crystal oscillator you have to change some fuse bits. Refer to the example
in the appendix for a Mega8 running at 8 to 16 MHz.
It is a good idea to document the default and new values for later reference.

again: be extremely careful with the fuse bytes!

before making any other changes read and understand the corresponding section in the controller
manual!
Take special care on how the bits are presented by the programming software. The controller
interprets a value of "1" as unprogrammed and a value of "0" as programmed.

Some programming software displays these bits "inverted"!
e.g.: as check-boxes with checked=programmed="0" and unchecked=unprogrammed="1".
Although this should be to your convenience it may be very confusing.

The fuse bytes are accessed like the flash and EEProm memory with a programmer
and a programming software.

2. take care: the newer controllers with 40pins and above (like the Mega16) come with a builtin JTAG
interface. This interface uses 4 port pins and is, at delivery, enabled. These port pins can not be
used as general I/Os without changing the fuse bytes.
e.g.:
the JTAG on the Mega16 uses PortC 2 to PortC 5. To use these ports as general I/O pins
you have to disable (= unprogram = set to "1") the JTAGEN bit.

3. a frequently asked question is the value of the capacitors for an external crystal oscillator.

This value depends on the oscillator itself and is specified by the manufacturer of the
oscillator (not by the controller!).
Place the crystal oscillator and the capacitors as close as possible to the controller.
The value of the capacitors is not very critical and 22pF fits in most cases.

4. to display the clock signal on an oscilloscope use a probe with an attenuation of 1:10.
Check only the XTAL 2 pin - not the XTAL 1 pin (this may stop the oscillation because
of the additional load of the probe)

5. another source of confusion is often the behaviour of character LCDs that are only connected
to the supply voltage. As long as the display is not properly intilialized most displays show
the odd lines as black bars, the even lines stay bright
e.g.
- on a 2-line display the 1st line is black, the 2nd bright
- on a 4-line display the lines 1&3 are black, 2&4 bright
Do not worry. The LCD is not faulty. This is "normal". But take care: before you buy a LCD
make sure, the AVRco supports the controller type the LCD uses (the display-contoller is a SMD chip
(or several) mounted on the rear of the LCD board). The supported types can be found on the LCD
port page of the Application Wizard.

 Unfortunately some so called "compatible" controllers are not "compatible enough" and cause
 problems.

 If you do not see the the bar(s) check the contrast-voltage. LCDs with an enhanced
temperature range (for automotive applications) need a negative contrast-voltage (as the
Grahic LCDs do). Take care to use the correct section of the datasheet:
most LCDs are manufactured in several versions (temperature ranges) and use different
ranges of the contrast voltage.

 AVRco Tools

E-LAB Computers Tutorial - 2.29

2.7 What Do You Need To Program Your Hardware?

the AVRco creates a program file (e.g. ...\Projects\TutorXX.hex). This file must be transferred
to the internal flash memory of your controller.
Maybe it created also an EEProm file (e.g. ...\Projects\TutorXX.eep). This file must be transferred to the
internal EEProm memory of your controller.

Until now these files reside on your harddisk. To download them to your hardware you need

1. some kind of connection between your PC and your controller hardware
2. a software that transferers the file(s) and is able to check them (via read-back)

The controllers offer several builtin functions to write/read/erase the internal memory areas.

This chapter describes the most popular one, the SPI (Serial Peripheral Interface).

The others are
- the "Parallel Programming Mode" that is very complex and
- the "JTAG Mode" that is only available on controllers with >= 40pins and has a lot

of extended features (like OnChip debugging)

The SPI is a synchonous interface that allows data transfers from/to peripheral devices.
At a Reset (while the Reset pin is held low) the SPI enters a special "Serial Programming Mode“
that allows to access the internal memory areas.
The Serial Programming uses the pins SCK, MOSI and MISO for data transfer. (1)
These pins (+ Reset) must be controlled by the PC.

On the PC there are actually 3 types of interfaces to connect such an equipment:
a parallel port, a serial port (= V24 = RS232) or an USB port.

To avoid confusion:

- the programming is always done serially (also with the parallel PC port!)
- the "Parallel Programming Mode" has nothing to do with the parallel PC port

(here is the "program" and "verify" done in parallel)

To connect the controller to the PC you need a programmer hardware (called ICP - In Circuit
Programmer or ISP – In System Programmer).

All types of programmers can be found:
serial/parallel/USB connected, professional and do-it-youself types.

And you need a programming software that fits to your programmer. There are also commercial
and free versions.

As the do-it-yourself programmers (usually published together with a free software)
cause very often problems, I recommend the use of a commercial one.

Links to do-it-yourself programmers and free software can be found near the end of the tutorial.

Furthermore all programmers / programming software allow you access to the
configuration bytes (fuses) of the controllers.

Note:
(1) there are exeptions like the Mega128. Check the Controller Manual!

 AVRco Tools

2.30 – Tutorial E-LAB Computers

E-LAB offers different types with serial (V24) and USB connection and the AVRco comes
with a programming software for these programmers. The software is an integral part
of the IDE, so you can use a speed button to download your application file(s).

This is the most secure and convenient way to program your hardware.

The commercial versions (standard and profi) of the AVRco come already with a programmer included. The
standard version includes a V24/RS232 type “ISP-V24” and the profi version includes an USB type “ISP-
USB” which also serves as the JTAG-ICE debugger.
All E-LAB programmer types support both modes, JTAG and SPI programming.

2.7.1 How To Use The E-LAB Programmer (serial programmer, SPI mode)

connect the programmer to your PC and your hardware and power the system on.
Refer to the programmers-manual for the different modes to provide the power.
Compile your project with the desired frequency value and frequency source. (1)

Press the Prommer speed button in the IDE to start the programming software: AVRprog.exe

Note:
(1): it does not matter that some new controllers come with the internal clock source at 1 MHz selected.
 The first step of the programming cycle is to set the fuse bits and select the correct ferquency.
 All further programming is done with that clock selection.

 AVRco Tools

E-LAB Computers Tutorial - 2.31

All needed informations are automatically transfered from the IDE to the AVRProg:

- the name of the flash file
- the name of the EEProm file (if available)
- the controller type
- the clock frequency

and the file(s) is (are) loaded.

Note: the "Programmer at COM1" message at the lower right corner. This indicates
the programmer has been successfully detected.

Press the Device Check speed button

On a new Mega8 you should get a message like:

 AVRco Tools

2.32 – Tutorial E-LAB Computers

I M P O R T A N T :

if you start the AVRprog the very first time with a new project you
MUST at first select the Programmer Options!
This has usually to be done only once (because the AVRprog stores
your selections for each project).
See the following pages for guidelines!

THIS MUST DE DONE (once) FOR EACH NEW PROJECT!

The AVRprog defaults to "program Flash, EEProm and Fuse Bytes".
The default for all fuse bits is inactive (binary "1").

e.g.:
without the correct selection the first programming cycle will set a Mega8 to
"External Crystal / Ceramic Resonator" (CKSEL 3..0 = "1111").
In oder to access the Mega8 again and change this selection you need to connect
such a clock device (if you do not already have).

2.7.2 How To Set The Programmer Options For a New Project
goto "Options" – "Programmer Options"

the programmer has not yet read the fuse bits and all are unchecked
press "Refresh" to read the bits from the controller (note the controller type in
the header line)
you should see now the actual state of the fuses (below the factory default)

 AVRco Tools

E-LAB Computers Tutorial - 2.33

- if you get an error message like

the controller fuses are (already) wrong and you need to apply the correct clock source
to re-program the chip. There is no information what kind of clock source is "correct".

- If you blew your controller with the AVRprog most likely all fuses are disabled.
 A Mega8 needs an external crystal or resonator to be accessed ("CKSEL3..0" are "1111").
For other controllers refer to the controllers manual for the meaning of "all fuses = "1".

- note that the JTAG programming mode does not need a clocked controller

- if you do not have a error message select the bits to WRITE.

e.g.
if you use the default (internal oscillator at 1 MHz) check the same bits

 AVRco Tools

2.34 – Tutorial E-LAB Computers

or, if you want to select an external clock from 8 to 16 MHz (see Appendix) un-/check

- to download your project press the Program speed button of the AVRprog

after the download your hardware stays locked. That means the Reset of your
controller is held active (low)

to start the program click the traffic light

the Reset pin is released and your applications starts

if you prefer to start your application as far as the download ist complete select
the programmer options and enable the "Auto release Target"

- note that –depending on the project and the controller- some options may be
"grayed out".
e.g.:
above the grayed out "program EEprom" selection as there is no EEProm file available

 AVRco Tools

E-LAB Computers Tutorial - 2.35

- note that AVRprog presents the logical state of the bits:

 e.g.: CKSEL0 is not activated, CKSEL1 ist activated

if you are confused or want to compare the bits with the controllers manual click the
checkbox in the upper right corner to display the binary values of the fuses

2.8 At A Glance: Multitasking

The following paragraph is an exerpt from the AVRco manual: Introduction to Multitasking:

With a socalled Embedded Application (Single-Chip application) often there is the problem, that several jobs should
be done at the same time. For example the characters of a serial interface should be fetched, checked and perhaps
they should be converted from hex into an integer.
At the same time ports should be watched by limit-switches or a LED should flash. Additional a measurement value
should be gathered by a poti and this value should be passed as a control output to an external controller. And the
controller should calculate an output value in a fixed time grid.
So the programmer has the problem with all these targets to do all things concurrently. The programmer is in the
difficult situation to watch several processes at the same time, whereby he must pay attention, that all functions
have to run concurrent and independent..
With simple time-loops etc. this problem can not be solved any more, maybe with tricks, which make the program
nonelastic and bovine.
So a solution is needed, which makes it possible to distribute the jobs, that they often get a chance as far as
possible, but do not block other jobs. Such a system is called Multi-Tasking, whereby task is a job/assignment.

To demonstrate the advantages of Multi-Tasking in this tutorial I use features that are well visible
in the simulator. They represent functions like the above mentioned in a real application.

 AVRco Tools

2.36 – Tutorial E-LAB Computers

The demo uses a 1*16 LCD to display a long message (43 character string) as a moving message.
A 7-segment-display shows simultaneously the start-index of the actual displayed substring.
Furthermore there are 6 LEDs that are periodically switched on and off.
These are the "background jobs" that have to be done concurrently to the "main-job".
The "main job" reads a switch and toggles a state variable that determins the desired LED
state (flash/off/on).

Open the Project Management and load the TutorDemo project!
Start the simulator:

Run it (F9) and try Switch1.0 (remember: not too fast).
Have a look at the "Main Program": it only checks the switch and sets the state of the LEDs.
The moving message, the "-SP-Display" (StringPointer) and the LED on/off sequence is done without
any statement in "main".

Imagine the big advantage for you:
you build and test a single part of your application. Let's say the moving message.
As far as this part is working you define it as a background task and free your main scope of this
burdon.

Or the "System Blinker":
no matter where you change the LEDstate to FlashOn in your program –
the flashing is done by the background process. You do not have to worry about it anymore.
And you do not even need to define a task for it. The System Blinker is part of the scheduler
and must only be imorted (the scheduler is the "supervisor" that handles the task switching).
But be aware:
this example shows only "low priority tasks". It may take some milliseconds longer to accept
a switch or to toggle a LED - this does not matter all all in this example.
As far as you specify "realtime-jobs" as tasks (or processes) and must guarantee a certain
time to react, Multi-Tasking becomes high sophisticated. Such systems need a complete under-
standing of the underlaying Multi-Tasking techniques including priorities, semaphores, pipes etc.

 AVRco Tools

E-LAB Computers Tutorial - 2.37

2.9 Useful Links

E-LAB Homepage: http://www.e-lab.de/index_en.html
 AVRco: http://www.e-lab.de/AVRco/index_en.html
 includes links to Pascal Tutorials

 Programmers: see Hardware / Programmers
 Mini Boards: http://www.e-lab.de/diverse/components_en.html
 Datasheets: http://www.e-lab.de/AVRco/avr_sheets.html

 Forum: http://www.e-lab.de/phpBB2/

English Forum: http://www.avrfreaks.net/
 Controller Manuals: see Devices

Do-it-yourself programmer and programming software:
 http://www.lancos.com/prog.html
 http://users.skynet.be/jiwan/Electronique/English/AVR%20Prog.htm
 http://www.myplace.nu/avr/yaap/index.htm

 http://s-huehn.de/elektronik/avr-prog/avr-prog.htm (german)
 http://ln.com.ua/~real/avreal/index_e.html (command line program)

WARNING:

there are some very simple parallel programmers that consist only of a few resistors.
These are NOT recommended for a regulary use. Bugs in your hardware could easily
destroy your parallel port of the PC and they imply other restrictions.
But they can sometimes be useful to check whether you have a programming hardware or
a programming software problem.

A lot of different links to all subjects can be found at

 http://www.mikrocontroller.net/links.en.htm

 AVRco Tools

2.38 – Tutorial E-LAB Computers

2.10 Appendix

2.10.1 The AVRco Versions

E-LAB offers two versions of the AVRco:

- the Standard Version

the Standard Version supports all popular AVR controllers and comes with
drivers for near all of the builtin functions ("On Chip Drivers") and a huge
amount of drivers for additional hardware ("Soft Drivers").
It includes also a V24/RS232 programmer “ISP-V24” which supports SPI and JTAG programming.

- the Professional Version
in addition to the Standard version, the Professional Version supports advanced
features like support for:
Units, Graphic LCDs, File System, IP Stacks (UDP and TCP), Heap and JTAG
Debugging. It includes an USB programmer “ISP-USB” which supports SPI and JTAG programming
and also JTAG debuggung.

As mentioned above, there is the free Demo Version on the E-LAB homepage. The only difference
between the Standard Version and the Demo is the limitation of the Demo to 4k code size. Besides this,
it comes with the full functionality of the Standard Version.

2.10.2 Source File Tutor01.pas

program Tutor01;

{ $BOOTRST $00C00} {Reset Jump to $00C00}
{$NOSHADOW}
{ $W+ Warnings} {Warnings off}

Device = mega8, VCC=5;

Import SysTick, LCDport, MatrixPort;

From System Import ;

 AVRco Tools

E-LAB Computers Tutorial - 2.39

Define
 ProcClock = 8000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0064, iData;
 FrameSize = $0064, iData;
 LCDport = PortD;
 LCDtype = 44780;
 LCDrows = 2; {rows}
 LCDcolumns = 16; {columns per line}
 MatrixRow = PortC, 0; {use PortC, start with bit0}
 MatrixCol = PinC, 4; {use PinC, start with bit4}
 MatrixType = 4, 2; {4 Rows at PortC, 2 Columns at PinC}

Implementation

{$IDATA}

{--}
{ Type Declarations }

type
 t_KeySet = BitSet of Keys;

{--}
{ Const Declarations }
const
 text : array [1..2,0..5] of string[16] =
 ((' ',
 ' E-LAB AVRco ',
 'Pascal Compiler',
 ' Tutorial ',
 '1st Application',
 ' ??? Line 1 ??? '),
 (' ',
 ' the 2nd Line ',
 ' could contain ',
 ' something ',
 ' defined by you ',
 ' ??? Line 2 ??? '));

{--}
{ Var Declarations }
{$IDATA}
var
 l1, l2, l1a, l2a : Byte;
 key : t_KeySet;
 Bkey [@key] : Byte;

{--}
{ functions }

 AVRco Tools

2.40 – Tutorial E-LAB Computers

{--}
{ Main Program }
{$IDATA}

begin

 EnableInts;
 loop

 key := ReadKeyBoard;
 Bkey := Bkey AND $AA; {1st line}

 case bkey of
 $80: l1 := 1;
 |
 $20: l1 := 2;
 |
 $08: l1 := 3;
 |
 $02: l1 := 4;
 |
 $00: l1 := 0;
 |
 else l1 := 5; {>1 key}
 endcase;

 key := ReadKeyBoard;
 Bkey := Bkey AND $55; {2nd line}
 case Bkey of
 $40: l2 := 1;
 |
 $10: l2 := 2;
 |
 $04: l2 := 3;
 |
 $01: l2 := 4;
 |
 $00: l2 := 0;
 |
 else l2 := 5; {>1 key}
 endcase;

 if l1 <> l1a {new text ?}
 then
 l1a := l1;
 LCDxy(0,0);
 write (LCDout,Text[1,l1]);
 endif;

 if l2 <> l2a {new text ?}
 then
 l2a := l2;
 LCDxy(0,1);
 write (LCDout,Text[2,l2]);
 endif;

 endloop;
end Tutor01.

 AVRco Tools

E-LAB Computers Tutorial - 2.41

2.10.3 The Mega8 Konfiguration Bytes

(default is internal oscillator at 1 MHz)

Mega 8

BootLock12 1 1
BootLock11 1 1
BootLock02 1 1
BootLock01 1 1
Lock2 1 1
Lock1 1 1

RSTDISBL 1 1
WDTON 1 1
SPIEN 0 0
CKOPT 1 0
EESAVE 1 1
BOOTSZ1 0 0
BOOTSZ0 0 0
BOOTRST 1 1

BODLEVEL 1 1
BODEN 1 1
SUT1 1 1
SUT0 0 1
CKSEL3 0 1
CKSEL2 0 1
CKSEL1 0 1
CKSEL0 1 1

U
U

>= 8 MHz

U
U
U
U

P
U

P
P
U

U
U
U
U
U
U

U

U
U

U
P
P
U
P

U
P
P

P

U

U
P

U
U

P
U

U

U
U

U
U

U
U

default

U

 AVRco Tools

2.42 – Tutorial E-LAB Computers

 AVRco Tools

E-LAB Computers Editor - 3.1

3 Editor PED32

3.1 Overview

3.1.1 Introduction

PED32 is a so called IDE (Integrated Development Environment).

PED32 (Programmers Editor for WIN32) serves as a platform for several Compiler, Assembler and
Debugger.

PED32 contains a comfortable Project-Administration rarely to find.

PED32 contains a Multi-Window Editor (MDI) comparable with that from Borland Delphi.

PED32 with correct settings, displays all errors found by the Compiler, Assembler and Linker.

PED32 in case of error the file is loaded, the cursor is positioned to the erroneous position, the line is
highlighted

PED32 uses an error list which can be scrolled and clicked by the mouse to highlight the corresponding line

PED32 samples project dependant the time used to build and finish the application.

PED32 has practically unlimited file size.

PED32 recognizes the files changed by the Compiler etc. and reloads them.

PED32 font sizes colors etc can be freely defined by the user.

PED32 has a configurable Syntax-Highlight.

PED32 supports syntax and context sensitive Help-Files.

PED32 supports Syntax-Highlight in font attributes and color

PED32 is widely configurable and therefore adaptable to many tools.

PED32 all this features together build a tool which is competitive to many others and mostly better

 AVRco Tools

3.2 – Editor E-LAB Computers

3.2 Projects
In opposite to many other IDEs and editors PED32 project-related and less file-related. That means, primarily
it is worked with a project, not with seperate files.

A project contains several source-files, e.g. the MainFile, the ProjektPfad, the used programming-time as
well as a project-related control-file, the socalled Control.

For a creation of a new project by the menu item Project/Edit Project and the dialog Project Admin or the
corresponding SpeedButton an appropriate control instruction must be specified in addition to project-specific
definitions like project name, MainFile, project path etc.. The dialog offers a selection of the existing controls.

If all specifications are correct and complete, so, if not existing, in case of Control=PICpas a MainFile is
automatically created, which can be used as a template. With the AVR here the Application Wizard is called,
which helps for the creation of the program template.

Normally further definitions are not required, because the used control contains all further instructions for the
IDE.

3.3 Controls
The control instruction Control is essential to work with a project, see above projects. In the main Control is
a batch description.

If the control is created correctly and completely by the menu item System/System Admin or the dialog
System Admin, normally it must not be changed any more.

Almost every point or line in this dialog has an according button in the upper button bar, the socalled
SpeedButton. The make-line and the simulator/debugger can also be called by CTRL + F9 or F9.

Every line consists of instructions, normally EXE-files, which are processed from left to right.
Further it is possible that there are numbers in a line, seperated by a seperator-character „|“ from the text
and other numbers. So other lines are included within the dialog. Pay attention to recursions!!

Example: The control PICpas is a control instruction for the E-LAB Pascal Compiler for the MicroChip PIC
processor family. For all projects, which are created with PICs and the Pascal Compiler, only the Control
PICpas must be specified for the project creation, and it is possible to edit, compile, debug etc. immediatly.

Here it must be said that the creation of a new control must be considered carefully. Besides there must be
an intensive deal with the according dialogs. The later resulting automation needs some preparatory work.

3.4 Syntax
The syntax definition (mind you compiler-language) normally is related to a certain control, and so it can be
found in a sub-dialog of System Admin. Under some circumstances it makes sense to have several Pascal
„languages“, for example for several different Pascal compilers. These must be created seperatly and
included in the respective control under syntax.

This creation of a respective language-syntax list is not a must. It only serves to emphasize certain syntax
elements within the editor.

 AVRco Tools

E-LAB Computers Editor - 3.3

3.5 Menu

Overview of the menu-items of PED32

3.5.1 File Menu

New Open a new file.
Open Calls the file-open dialog.
Open Mainfile Opens the MainFile of the project
Open Mapfile Opens the MapFile of the project
Save Ctrl + S Stores the actual editor window into the corresponding file.
Save As Stores the actual editor window with a new name
Close File Closes the actual editor window with possible file security
History Shows the last 10 workked projects in time series.
 By clicking on the chosed project is loaded.
Insert File Reads a file at the actual caret position.
Save Block Writes the highlighted block as a file.
Print Prints the actual file (window) or block.
Exit Alt + F4 Close PED32.

3.5.2 Edit Menu

Undo Ctrl + Z Undo the last change (Undo)
Redo Shift + Ctrl + Z Undo the last undo (Redo)
Cut Ctrl + X Cut out a highlighted block and copy it into the notebook
Copy Ctrl + C Copy highlighted block into the notebook
Paste Ctrl + V Copy notebbok to the caret position
Delete Delete symbol right of the caret or the whole block
Select All Mark the block from begin to the end of the file

3.5.3 Search Menu

Find Ctrl + F Search a word (at the caret)
Replace Ctrl + R Search a word (at the caret) and replace it
Find Next F3 Repeat last search/replace
Replace Tabs by Softtabs Replace hard tabs with softtabs
Replace Tabs by Spaces Replace hard tabs with spaces
Goto Line F4 Set caret to the line number x
Clear all Markers Sets all markers back

3.5.4 Project Menu

Load Project Opens dialog to load a project
Edit Project Opens dialog to create a new or change an existing project
Project Information Displays the actual state of the project
Project Options Edit compiler switches for Conditional Compile and Project Unit Paths

3.5.5 System Menu

System Options Opens a dialog to hide the compiler-window and define System Unit Paths
System Admin Special definitions of the controls (control-instructions for div. Compilers)

 AVRco Tools

3.4 – Editor E-LAB Computers

3.5.6 IDE Menu
General Options Opens the dialog for the font- and color definition
Tabs Define the TABs
Popup delay Delay of the syntax fasthelp
Edit Keyboard Macros Opens dialog to edit Keyboard Macros

3.5.7 Window Menu
Arrange Icons New order of editor windows, decreased to icons
Minimize all Decrease all editor windows to icon size
Window ... Do a certain editor window in the foreground

3.5.8 Info Menu
Help IDE Ctrl + F1 Call the IDE or editor help in the context
Help Syntax F1 Call the compiler or syntax help in the context
Info IDE Call the overview of the the IDE or editor help
Info Syntax Call the overview of the compiler or syntax help
About Display of the actual version of PED32

3.6 Dialogs

Overview of the Dialogs of PED32

3.6.1 Project Admin
Serves to load or change an existing project, as well as to create a new project. Display of the used time of
the seperate projects.

Subordinate dialogs:

Project Path Serves to define the path of the chosed project

Main File Serves for the selection of the Main Files .

3.6.2 Project Options
Compiler switches for the conditional compile can be defined here. These are passed to the compiler, which
treats them like a {$DEFINE Label}. Also project dependant unitpaths are defined here.

3.6.3 Project Info
Display of the state of the actual project, as well as general datas like RAM and ROM consumption and
allocation. Position and size of stacks and frames.

3.6.4 General Options
Serves to define the font/character size, as well as the colors for the normal text and ist background,
highlighted text and background, error text and ist background and comments and strings. Also the general
behaviour of the editor and IDE (Indent, Backup, Fasthelp) are defined here.

 AVRco Tools

E-LAB Computers Editor - 3.5

3.6.5 Macro Editor
Serves to create keyboard macros. So complete code-blocks can be created and edited. These blocks are
inserted into the current text by hotkeys.

3.6.6 Character Table
Serves to insert special characters into the source text. In addition it is able to establish the hex- or decimal
value of a character.

3.6.7 System Admin
Serves to create the controls for the seperate tools, for example compiler, assembler etc. Further the syntax
of the used languages is described, which is required for the syntax-highlighting of the editor. The error
evaluation of the tools must also be declarated.

Subordinate dialogs:

Syntax + FileMasks Serves to chose the language, e.g. Pascal, the limiter for comments, as well as the
file masks, e.g. *.PAS, *.ASM

Error Definitions Declaration of the error files and their internal structure

Help File Name and path of the compiler related Help File

3.6.8 File Open
Seves to chose and load the desired files inclusive their path

3.6.9 File Save As
Seves to store the actual file with a name and/or path

3.6.10 Print
Serves to chose a printer, ist definition and print of the actual editor file.

3.6.11 Find
Serves to define the search options and search start

3.6.12 Replace
Serves to define the search/replace options and search/replace start.

3.6.13 Goto Line
Positions the caret to the specified line.

3.6.14 TabSize
Defines the length of the tabulator.

 AVRco Tools

3.6 – Editor E-LAB Computers

3.7 SpeedButtons

Overview of the Speedbuttons of PED32

3.7.1 FileOpen

 Calls the file-open dialog.

3.7.2 Save

 Ctrl + S Stores the actual editor-window into the corresponding file

3.7.3 Project administration

 Opens the project dialog

3.7.4 Application Wizard

 Starts the program generator

3.7.5 Printer Dialog

 Opens the printer dialog

3.7.6 Cut

 Ctrl + X Cuts out a highlighted block and copies it into the notebook

3.7.7 Copy

 Ctrl + C Copies the highlighted block into the notebook

3.7.8 Paste

 Ctrl + V Copies the content of the notebook to the caret position

3.7.9 Find

 Ctrl + F Opens the search dialog

3.7.10 Replace

 Ctrl + R Opens the search/replace dialog

3.7.11 Undo

 Ctrl + Z Undo the last text change

 AVRco Tools

E-LAB Computers Editor - 3.7

3.7.12 Tile horizontal

 Devides the existing PED32 window even into the opened editors. The windows are
one below the other.

3.7.13 Tile vertical

 Devides the existing PED32 window even into the opened editors. The windows are
side by side.

3.7.14 Cascade

 The opened editors are located descending in a row

3.7.15 Split Window

 The actual editor window is devided into two wondows. Both windows contain the
same file, but there are different positions within the file.

 So it is possible to edit at two different positions in the file at the same time. It is very
helpful for some operations!

3.7.16 Calculator

 opens the calculator

3.7.17 Project Info

 Displays the state of the project

3.7.18 Alphabet

 Opens the alphabet dialog

3.7.19 Make

 Ctrl + F9 The command-line, which is in the defined control in the make-line is processed.
 Then eventual errors are evaluated.

3.7.20 Compile

 The command-line, which is in the defined control in the compile-line is processed.
 Then eventual errors are evaluated.

3.7.21 Link

 The command-line, which is in the defined control in the link-line is processed.
 Then eventual errors are evaluated.

 AVRco Tools

3.8 – Editor E-LAB Computers

3.7.22 Post Processor

 The command-line, which is in the defined control in the PostProc-line is processed.
 Then eventual errors are evaluated.

3.7.23 Debugger

 The command-line, which is in the defined control in the debugger-line is processed.
 Then eventual errors are evaluated.

3.7.24 Simulator

 F9 The command-line, which is in the defined control in the simulator-line is processed.
 Then eventual errors are evaluated.

3.7.25 Assembler

 The command-line, which is in the defined control in the assembler-line is
processed. Then eventual errors are evaluated.

3.7.26 RomSim/Prommer

 The command-line, which is in the defined control in the RomSim-line is processed.
 No error evaluation.

3.7.27 Tool

 At the moment it has no function

3.7.28 Librarian

 The command-line, which is in the defined control in the library-line is processed.
 Then eventual errors are evaluated.

3.7.29 DisAssembler

 The command-line, which is in the defined control in the DisAsm-line is processed.
 No error evaluation.

3.8 State Bar

Cursor Pos text total upper most file size Insert or number of
line changed linecount line in the overwrite last
column window mode occured
 errors

 AVRco Tools

E-LAB Computers Editor - 3.9

3.9 Error window

If there are errors or warnings enabled in a compiler, so an error-window is opened at the bottom of the
editor. It contains all errors and possible warnings with an explanation. The editor scrolls to the according
position in the source by a doubleclick on one of these lines.

The faulty lines are marked with the corresponding color in the source, at the left there
are the error-numbers. A click on this number scrolls the error-window at the bottom, so
that the according error and its explanation get visible. This line additionally gets a
HighLight.
If this source is essentially changed or deleted, the error highlight and the number in the
source will be deleted.

3.10 HotKeys and ShortCuts = Keyboard commands

3.10.1 IDE and Syntax Help
Ctrl + F1 Call help of the IDE. Help is depending on the actual dialog or call Focus
F1 Syntax-Help. Help is depending on the word below the caret.

3.10.2 File and window operations
Ctrl + S Stores the actual editor window
Ctrl + TAB Switch over to the next editor window

3.10.3 Move caret
 Caret 1 character to left
 Caret 1 character to right
 Caret 1 line up
 Caret 1 line down
Ctrl +  Caret 1 word to left
Ctrl +  Caret 1 word to right
HOME Caret to begin of the line
END Caret to end of the line
PageUp 1 screenpage in direction to begin of file
PageDown 1 screenpage in direction to end of file
Ctrl + PageUp Caret to the actual screen page begin
Ctrl + PageDown Caret to the actual screen page end
Ctrl + HOME Caret to begin of file
Ctrl + END Caret to end of file
F4 Set caret to line number x
Ctrl + n Jump to the marker “n“ (0..9)
Shift + Ctrl + n Set marker “n“ (0..9)

3.10.4 Edit
Insert Insert/overwrite on/off
Delete Delete character right of the caret or the whole block
BackSpace Delete character left of thecaret or the whole block
Ctrl + Enter Insert empty line at caret position

 AVRco Tools

3.10 – Editor E-LAB Computers

Ctrl + N Insert empty line at caret position
Ctrl + Y Delete line completely at caret position
Ctrl + T Delete word completely right of the caret position
Ctrl + P Insert control character at caret position
Ctrl + Z Undo last change
Alt + BackSpace Undo last change
Shift + Ctrl + Z Undo last undo

3.10.5 Search/replace
Ctrl + F Search word (at caret position)
Ctrl + R Search word (at caret position) and replace it
F3 Repeat search or replace

3.10.6 Caret block commands
Shift +  caret 1 character to left with blockextension/abridgement
Shift +  caret 1 character to right with blockextension/abridgement
Shift +  caret 1 line up with blockextension/abridgement
Shift +  caret 1 line down with blockextension/abridgement
Shift + Ctrl +  caret 1 word to left with blockextension/abridgement
Shift + Ctrl +  caret 1 word to right with blockextension/abridgement
Shift + HOME caret to begin of line with blockextension/abridgement
Shift + END caret to end of line with blockextension/abridgement
Shift + PageUp 1 screenpage in direction to begin of file with blockextension/abridgement
Shift + PageDown 1 screenpage in direction to begin of file with blockextension/abridgement
Shift + Ctrl + PageUp caret to the actual screenpage Anfang with blockextension/abridgement
Shift + Ctrl + PageDown caret to the actual screenpage Ende with blockextension/abridgement
Shift + Ctrl + HOME caret to begin of file with blockextension/abridgement
Shift + Ctrl + END caret to begin of file with blockextension/abridgement

3.10.7 Edit block
Shift + Delete Cut out block, copy of the block into Windows-notebook
Ctrl + X Cut out block, copy of the block into Windows-notebook
Ctrl + Insert Copy block into Windows-notebook. Block unchanged.
Ctrl + C Copy block into Windows-notebook. Block unchanged.
Shift + Insert Copy block out of Windows-notebook to caret position.
Ctrl + V Copy block out of Windows-notebook to caret position.
Shift + Ctrl + I Shift block to right
Shift + Ctrl +U Shift block to left.

3.10.8 Diverse
Ctrl + F9 Start Make Tool . Start Compiler, Assembler (Linker)
F9 Simulator/Debugger

3.10.9 Keyboard Macros

With the dialog Edit Keyboard Macros the user is able to create textblocks, e.g. program sequences, which
can be inserted to a according ShortCut or HotKey at the cursor position in the text.

 AVRco Tools

E-LAB Computers Editor - 3.11

3.11 Projects

3.11.1 Working with projects

In opposite to many other IDEs and editors PED32 project-related and less file-related. That means, primarily
it is worked with a project, not with seperate files. The IDE knows a project, if it is created once until it is
deleted. The programmer must not maintain directories or according tools. Load the project and work.

A link from e.g. Pascal-files with PED32 is not necessary and does not make sense. Only a link from PED32
with *.ppro files makes sense.

A project contains several source-files, e.g. the MainFile, the ProjektPfad, the used programming-time as
well as a project-related control-file, the socalled Control.

For a creation of a new project by the menu item Project/Edit Project and the dialog Project Admin or the
corresponding SpeedButton an appropriate control instruction must be specified in addition to project-specific
definitionss like project name, MainFile, project path etc.. The dialog offers a selection of the existing
controls.

If all specifications are correct and complete, so, if not existing, a MainFile is automatically created, which
can be used as a template. The template is a normal text-file. For creation of the respective Control the
name and the path of ththis template must be registered. If an application wizzard program generator) is
specified in the control, so the template is started instead of the program generator.

Normally further definitions are not required, because the used control contains all further instructions for the
IDE.

Like already mentioned, the IDE PED32 stores the files of all projects. A call of an existing project is limited
on two clicks in future. It is possible to process seperate files, but the actual intention is the file processing
within a project.

After a certain adaption time from a normal editor to projects the user learns fast to cherish the advantages.

So the low additional expenditure for the creation of a project parameter is well-accepted.

 AVRco Tools

3.12 – Editor E-LAB Computers

3.11.1.1 Load Project

To load an existing project the dialog Project Admin must be opened. This can be made by the menu-item

Project .. Load Project or by the SpeedButton . So the following dialog is opened. The dialog page
Project load/delete is selected by a click on the respective tab.

With a doubleclick on the chosed entry or
a click on load button the selected project
is loaded.

A further possibility is in the file-menu with
the menu-item History. Here a list of the
last processed projects in order of time is
diplayed. Also load a chosed project with a
click .

Obsolete projects are deleted by the
Delete button.

The projects assigned to the seperate
controls (compiler) are displayed on
seperate pages.

After the selection of the chosed project all
project-relevant files are loaded out of the
file PED32.ini. These files contain a.o. the

home directory of the project and the used control.

PED32 now switches the Current Directory in windows to this directory. All further file operations within the
IDE which are made without path specification, now are in this directory.

Next the IDE loads the project control file xxx.ppro. This file now contains all further project files as well as
e.g. the last opened files.

Now the according control is loaded and next the last opened files. At last is checked, if an error-file is
existing. If this is the case, it is opened and evaluated. So the loading process is finished and it can be
worked.

Starting or loading by DragAndDrop does not make sense and is not provided.

A link from *.ppro files to PED32 is possible. If this link is made once, it is possible to start the IDE PED32 at
any time within the explorer or similar programs by a doubleclick on a file with the format xxx.ppro. This now
is loading the clicked project.

A doublestart of PED32 is not possible, because both programs must maintain the same INI-files in
competition. Sure there will be strange results.

The editor in PED32 watches all loaded files. If a loaded file is changed from outer side, for example by an
editor, the IDE gives the information that the file has been changed, and the inquiry, if it should be loaded
again. The re-load is automtically, if for example the compiler generates a changed assembler source.

 AVRco Tools

E-LAB Computers Editor - 3.13

3.11.1.2 Edit/New Project

To change an existing project or to create a new one, the dialog Project Admin must be opened. This can

be made by the menu-item Project .. Edit Project or by the SpeedButton . Then the following dialog is
opened. The dialog page New-Edit-Account is selected by a click on the respective tab.

If a new project should be created, the
New button must be clicked. The further
procedure is identic for New and Edit.

In the edit window Name the chosed
project name is registered. This name is
also used as project filename. But it can
contain all characters, which are allowed
in WIN95 etc, e.g. space.

By an edit of the window Directory the
working directory is specified.
A doubleclick on this window or the next
button opens the dialog Project Path. So
it is possible to chose an existing directory
as working directory.
By an edit of the window MainFile the
main-file is specified.

Another possibility to open the dialog MainFile is a doubleclick on this window or a click on the next button.
So an already existing file in the working directory is declared to a MainFile.

If the registered MainFile is not existing, so, if specified in the chosed control, a template-file with the name
MainFile is copied into working directory, if there is no program generator provided.

The window Control displays the actual chosed control. By a click on the right arrow-button of this window
the actual known controls are offered for selection. The desired control is selected by a click. A new control,
if necessary, first must be created by the menu System|System Admin and the dialog SysAdmin. If a
control, for example PICco32, is created once, it can always be used for all projects with the Pascal-compiler
in future.

Seperated by a frame, the time-relevant project files are displayed left at the bottom. These are access files,
devided in project creation (first access) and last call (last access).

Above the used process times are displayed. Total account indicates the last accounted time effort. Current
account indicates the current time after the last account. The sum of both times is the actual used time for
the project.

If there is an intermediate account, you must click the Update button. Now current account is added with the
total account and current account is set to zero. Total account now contains the absolute time.

The times can be reset by Clear. So the access files are set to the actual date and time of day. S the project
is quasi started new.

All changes must be confirmed and saved with Save. If this is not made, so if the dialog should be closed, it
is inquired if a save of the change is desired. If the inquiry is negated, the changes get invalid.

 AVRco Tools

3.14 – Editor E-LAB Computers

3.11.1.3 Project Path

Sub-dialog of the dialog Edit/New
Project .

For a new creation or an edit of a
project, a home- or working-directory
must be assigned to the project. By a
doubleclick in the dialog Edit/New
Project on the edit field Directory or
dthe right button the dialog Project
Path is opened.

Here it is possible to declare an
existing directory to a working directory
of the chosed project. The right half
contains the relevant files of this
directory for information. For selection
pay attention that desired path appears
completely at the bottom in the field. It
is able to edit this field, too. If the
changed path is not existing, it is
inquired, if the directory should be
created new.

3.11.1.4 MainFile

Sub-dialog of the dialog Edit/New Project .

For a new creation or edit of a project a mainfile must be
assigned to the project. For a new creation of a project the
desired filename typed in the edit field Main File in the dialog
Edit/New Project.

If the file is already existing, the dialog Main File can be
opened by a doubleclick on the field or a click on the button.

Here an existing file can be declared to the MainFile of the
chosed project. If no corresponding file is existing, so the
name of the new mainfile must be typed in the bottom field.
To be compatible with other tools, the name should
correspond to the DOS conventions.

If a project is created once with the above mentioned dialogs,
it can be called at any time.

In the working directory of the project there is created and maintained automatically a project control file. This
file contains all project-related files. The filename of this file is "ProjektName.ppro". The structure is
corresponding to a windows-ini-file and so it is a normal textfile. This textfile should only be changed in case
of reperatures.

At the end of the total procedure (new creation or edit of a project) the IDE checks, if the typed project
mainfile is existing. If this is not the case, so it is checked in the assigned control, of an application wizzard or
a template has been specified and there is a corresponding procedure.

 AVRco Tools

E-LAB Computers Editor - 3.15

3.11.1.5 Application Wizard
If an Application Wizard is defined in the according control, it is called, if there is no mainfile existing in a new
project. So it is possible to create comfortably a new application.

Example for an
application expert

AppWizz for E-LAB
AVRco

3.11.1.6 Template
If there is no wizzard existing, but a template-file, so it is copied into the working directory with the name
MainFile. The template-file can be any textfile with any content.

3.11.1.7 Project Options

E-LAB Compiler of the serie Pascal-scm know the
socalled Conditional Compile (see also Compiler
databook). Such $DEFINE instructions can be
created, edited and made valid with this dialog. The
dialog contains all Defines, which were created for this
project.

A new define is typed in the edit-field. Several values,
which are valid at the same time must be devided with
a semicolon. If the line is complete, it must be added
by the add-button.
A list of all defines you can get by a click on the arrow
button. By a further click on an arrow of the opened
window an existing line is chosed. With the ok-button
this definition is allocated to all further compile runs.

PED32 inserts this line into the xxx.ppro file, where it
is processed by the compiler. The compiler interprets

the seperate instructions of this line as if is in the source code. Out of the line Test; Sample you get 
{$DEFINE Test}
{$DEFINE Sample}

Project related Unit Search Paths can be defined in the lower edit field. All defined paths in the list are
passed to the Compiler via the „xxx.ppro“ file. The Compiler must be able to interpret this lines.

 AVRco Tools

3.16 – Editor E-LAB Computers

3.11.1.8 System Options

Visibility
In case of a compiler or assembler run the check
boxes define wether the tools are visible or not. If
visible a window is opened and the processed lines
are counted. This wastes time and the tools slow
down.

Search path for Units
The search path for units are defined here and are
passed to the compiler. All paths are relevant in the
entire system. That means this type of paths are not
project dependant but always in use.

3.11.1.9 Project Information

All relevant parameters of a project can be
displayed and analysed by this dialog. So it is an
exception that the long winded analysis of the
assembler listing is necessary.

With the button RAM map you get additional
information about the exact memory usage.

 AVRco Tools

E-LAB Computers Editor - 3.17

3.12 Controls

3.12.1 What is a control?
The control instruction Control is essential to work with a project, see above projects. In the main Control is
a batch description.

If the control is created correctly and completely by the menu item System/System Admin or the dialog
System Admin, normally it must not be changed any more.

Almost every point or line in this dialog has an according button in the upper button bar, the socalled
SpeedButton. The make-line and the simulator/debugger can also be called by CTRL + F9 or F9.

Every line consists of instructions, normally EXE-files, which are processed from left to right.

Further it is possible that there are numbers in a line, seperated by a seperator-character „|“ from the text
and other numbers. So other lines are included within the dialog. Pay attention to recursions!!

Example: The control PICpas is a control instruction for the E-LAB Pascal Compiler for the MicroChip PIC
processor family. For all projects, which are created with PICs and the Pascal Compiler, only the Control
PICpas must be specified for the project creation, and it is possible to edit, compile, debug etc. immediatly.

This instruction (Control) is in the home directory of PED32 and has the name PED32.ini, all other already
defined controls can also be found in this file. This file is structured like a standard windows ini-file and so it
is a textfile. This file should only be changed in case of reperatures. PED32 maintains this file automatically.

Here it must be said that the creation of a new control must be considered carefully. Besides there must be
an intensive deal with the according dialogs. The later resulting automation needs some preparatory work.

The seperate items of a control normally are socalled batch-instructions, which are executed, if the
respective SpeedButton is clicked. If, for example the SpeedButton Link is clicked, the line linker of the
control is processed. But it is not omplicitly necessary to call a linker, there can also be any operations,
depending on the entry of this control.

Except the fixed link between the seperate SpeedButtons and the control entries there is no further link, that
means every control entry can be defined freely.

But some of the instructions (Make, Compiler, Linker, Assembler and Librarian) do an error check after their
execution. Therefor it is searched for the errorfile within the working directory, its name and structure is also
in the respective control.

Because a control knows only one errorfile and one structure, the called tools in this control all must have
the same error file name and protocols, otherwise errors can not be evaluated.

The E-LAB Tools like for example PICco32 and PICasm32 fulfill this requirement.

 AVRco Tools

3.18 – Editor E-LAB Computers

3.12.2 Control Edit
To change an existing control or to create a new one the dialog System Admin must be opened. This is
made by the menu item System/System Admin. After that the following dialog is opened. The dialog page
Controls is chosed by a click on the respective tab.

If an existing control should
be deleted, so first it must be
loaded by the load button and
by a click on the select field.
Now the loaded control can
be deleted by the delete
button.

The creation of a new control
is identic with edit an existing
control, expect that first a
name must be specified.

This happens by a click on
the new-button. Now an
inputfield opens above the
new-button. Here the name
of the new control must be
typed. If the name is
complete, it is confirmed by a
click on the load-button.

The new control now must be
chosed out of the list Control
Select and must be loaded
by the load-button. The futher
procedure is equal to the edit
of a control and is described
now.

Control Edit.
The control, which must be edited, is chosed out of the list Control Select and is loaded by the load-button.
All already processed items of this control are obvious in the items list. Every singular item (Batch line) can
be chosed by a click on the respective line.

The chosed term then appears in the edit-window above for further procedure. If here are changes, they
must be confirmed and strored with the Store button. The changes are visible in the list immediatly.

If the changes made in the editfield should be invalid, so the sore button may not be clicked, but the next
item in the list must be . So the changes are invalid.

The items 1..10 (Make..RomSim) are normal batch-lines, whixh can be changed with the edit field. They
have a respective SpeedButton. The items Syntax, ErrorFile, HelpFile, Template and AppWizz open an
additional dialog. These dialogs are described later.

Structure of a batch line.
A batch line (items 1..10) is able to use other batch lines as reference. The entry 2|Hallo.exe|7 means, that
first the item 2 (Compile), then the program Hallo and then the item 7 (Assemble) is processed.

 AVRco Tools

E-LAB Computers Editor - 3.19

Further the MainFile, the ProjectFile, the working directory, as well as the actual Editor window can be
referenced. Therefor the placeholders %Mp, %Mb, %Me, %Proj, %Wp, %Wb and %We are determined.

%Mp indicates the working register
%Mb indicates the filename of the MainFile without extension
%Me indicates the extension of the MainFiles (e.g. pas)
%Wp indicates the register of the actual editor window
%Proj indicates the path and filename of the project control files
%Wb indicates the filename of the actual editor window without extension
%We indicates the extension of the actual editor window (e.g. pas)
%Proj indicates the project (File) name, not the MainFile

An example for file reference:
Assuming that the working directory of the project is "C:\Projekte\Tests"and the mainfile is "MyProject.Pas",
the following entry is created:

c:\projekte\PICco32\PICco32.exe %Mp\%Mb.%Me

This batch line calls the program "PICco32.exe" and passes it in the commando-line
"%Mp\%Mb.%Me" as the following string:

"C:\Projekte\Tests\MyProject.Pas".

For div. lines at the left there is a CheckBox, which specifies, if , after the respective program call, the IDE
has to wait, until the called program is finished or if it can take over the control. (Exec and Wait) For some
simulators/emulators a complete reset after every compile procedure is long-winded, so the checkbox is
switched off, and e.g. the emulator always stays loaded after the first start.

If all items are typed crrectly and completely, the dialog has to be saved with the Save button. Here all
changes can be made invalid again by using the Exit button at the end, not the save button.

Attention:
Do not program a recursion!! A recursion would be, if in item1 the item2 would be called and in item2 item1.
Or in item1 item1 itself! The batch processor would execute alternate item1 and item2 without end or until a
system crash.

 AVRco Tools

3.20 – Editor E-LAB Computers

3.12.3 Syntax select
If the item „syntax“ is clicked in the the batch list for editing or creating a new control, the following sub-
dialog is displayed. It serves e.g. for selection of the desired high-level language (not compiler), of the file-
masks as well as of the comment limits within the source. The several item are linked with the „language“,
but they belong to the calling control, e.g. PICpas.

Upto 5 file masks can be defined,
which can be used by the IDE32
for the several file dialogs.

Every entry consists of a comment
field (left) and the mask (right).

The Comment Delimiters (limits)
on the left and right are used by
the editor for the comment
HighLight.

At the left bottom a selection of the
high-level languages (not
compiler), which are placed at
disposal, is displayed. By clicking
an item the „language“ is copied in
the field Selected Lanugage.

3.12.4 Error File define
An essantial point of the software development with a compiler or assembler is the error-evaluation. Without
this feature you are put back to the stone age of software. But the essential aspect is that the evaluation after
a compile etc. loads the faulty file, positions the caret to the faulty position, and, if possible, it displays an
error text or description.

Presupposition is, that tools (compiler etc.) create an error file, which can be evaluated. The IDE must know
the structure of this file. Because of the the file and its structure must be specified in the dialog below (sub-
dialog of control edit).

The name and the path of the expected file must be typed in
the edit field Name of ErrorFile. Here the placeholder, which
are described above in control edit, are also permitted.

The structure of the file is devided in a line into the declaration
of the line-number, limited by two delimiters, and the error-
description, also limited by two delimiter.

Because a control only knows one error file and so one
structure, the called tools in this control must all use the same
error file name and protocols, otherwise errors can not be
evaluated.

The E-LAB Tools like for example PICco32 and PICasm32
fulfill this requirement.

 AVRco Tools

E-LAB Computers Editor - 3.21

3.13 Syntax

Whose language

The syntax definition (mind you compiler-language) normally is related to a certain control, and so it can be
found in a sub-dialog of System Admin|Control Edit. Under some circumstances it makes sense to have
several Pascal „languages“, for example for several different Pascal compilers. These must be created
seperatly and included in the respective control under syntax.

This creation of a respective language-syntax list is not a must. It only serves to emphasize certain syntax
elements within the editor.

3.13.1 Syntax edit

To change an existing
language-syntax or create
a new one, the dialog
System Admin must be
opened. This is made by
the menu-item
System/System Admin.
After that the following
dialog is opened. The
dialog page Syntax is
selected by a click on the
respective tab.

If an existing file should
be deleted, first it must
be loaded with the load-
button and a click in the
selection fiel. The loaded
language can be deleted
with the delete-button.

The creation of a new
language syntax is identic
with the edit of an existing
one, except that first a
name must be specified.

This happens with a click on the new-button. Now an inputlield is opening above the new-button. Here the
name of the new language must be typed. If the name is complete, this must be confirmed with a click on the
load-button.

 AVRco Tools

3.22 – Editor E-LAB Computers

The new language syntax now must be chosed out of the list Syntax Select and loaded with the load-
button. The further procedure corresponds to the edit of a language and is following described.

Edit language syntax.
The language, which must be edited, is chosed out of the list Syntax Select and loaded with the load-
button. All already existing syntax words are visible in the list. Every seperate word can be chosed by a
doubleclick on the respective entry or by a click on the edit-button.

The chosed term then appears in the edit-window above for further procedure. Here the term can be
changed. A change in the text does not create a change in the list, but a new term! A change of the text can
be reached with load, delete and new input of the term. With a click on the store-button it is checked, if the
new or changed term is already (identic) in the list. If this is the case, the old term stays existing and the text
attributes are taken over. If the term is not in the list, the complete text with its attributes is taken over.

So it is secured that new or changed terms create a new term in the list, even if they distinguish in only one
letter.

Attribute changes, made by the RadioButtons Norm, Bold, Italic as well as by the CheckBox Case do not
create a new term as well as the change of the font color, always providing there have been no changes in
the text itself.

The font attribute norm (normal), Bold and Italic exclude each other. Only one attribute is possible for one
term.

The CheckBox Case specifies, if the editor should pay attention to capitalization/small letters of this term. If
case is active, so the editor uses the defined font attribute and color only if the word found in the source text
is abolutely identic (capitalization/small letters) with the entry.

To every term a textcolor can be assigned. This happens by clicking on the respective color level.

All attribute changes are visible in the editfield immediatly. The list field also contain attributes, but it is not
possible to make them visible.

If there have been changes, so you must click on the store-button to store them. The text changes are
visible in the list immediatly.

If the changes made in the edit field should not be stored, do not click the store-button, but the next item of
the list must be selected. So the changes are invalid.

To store all changes (file NewSyntax.lng) the process must be saved with save at the end or exit.

 AVRco Tools

E-LAB Computers Editor - 3.23

3.14 Editor Setup

3.14.1 Fonts, Colors, Backup and Fasthelp

With this dialog, calling with the menu-item IDE/General Options, the font color, the font size and the
common behaviour of the editor and IDE can be defined.

Auto indent Automatic indentation is select.
Create Backup before any file is stored, a backup of the existing file is made, that means the origin
 file is renamed to xxx.BAK
Auto save before call and running a tool (Compiler etc) all open files will be saved
save Windowpos stores the positions and size of all open editors when a project is closed. If this
 project is re-opened, the positions and sizes will be restored.
scroll Caret with scroll operations in an editor window, the caret is also scrolled/dragged. So it is
 always in the visible area of the editor window.
show Hints sets all small hintwindows of buttons, editfields etc. visible.
show funcs at Mouse FastHelp windows (Syntax) are displayed at the mouse position
show funcs at Caret FastHelp windows (Syntax) are displayed at the caret position

For all 5 possible text types a
related text color can be
selected.

For 3 of the text types only the
respective background color is
selectable.

The textsize for all is defined
by fontsize.

A click to the button default
restores all font and color
settings to the default value.

The ok button stores the
selected font and color
attributes into PED’s ini file.

 AVRco Tools

3.24 – Editor E-LAB Computers

3.14.2 Character table

This table serves to look for the ordinal- or hex values of characters. Further it is able to create a text line,
which can be copied into the notebook or into the editor.

 AVRco Tools

E-LAB Computers Editor - 3.25

3.14.3 Keyboard Macros

Keyboard Macros are
texts, which can be
inserted with socalled
Hot-Keys into the actual
text.

For this the macros must
be created with this
dialog. The call is made
by IDE/Edit Keyboard
Macros.

To create a new macro a
free field is clicked blue
with the mouse button.
The macro text now can
be typed into the upper
input field. With a click on
the field select HotKey
The caret is positioned on
this field. With the desired
key-combination the
hotkey is assigned, e.g.
„Ctrl+Shift+P“ for
Procedure.

With Store Item thr edit field and the HotKey is stored in the table. The complete table is saved with save
all.

The edit of an existing entry is the same procedure.

Pay attention that the ALT-key does not function in case the main menu has a underlined letter.

For edit now the according text can be inserted at the position of the caret with the respective key function
(HotKey).

 AVRco Tools

3.26 – Editor E-LAB Computers

3.15 Menus

3.15.1 File Menu

New Open a new file.
Open Calls the the file-open dialog.
Open Mainfile Opens the MainFile of the project
Open Mapfile Opens the MapFile of the project
Save Ctrl + S stores the actual editor window in the corr. file
Save As Stores the actual editor window with a new name
Close File Closes the actual editor window with possible file storage

History Displays the last 10 processed projects in order of time.
 By clicking the chosed project is loaded.
Insert File Read a file at the actual caret position.
Save Block Write the highlighted block as a file.

Print Print the actual file (window) or block.
Exit Alt + F4 Finish PED32.

3.15.1.1 History
The sub-menu History displays 10 processed projects in order of time. The last opened project is always at
first position. So an overview of the actual projects is possible. With a click on the respective entry it is
opened or loaded.

The further procedure is identic with above described Load Project.

3.15.1.2 Insert File
With the menu-item Insert File a dialog for file-selection is opened. If a file is selected, then it is copied to the
caret position in the actual editor window.

3.15.1.3 Save Block
With the menu-item Save Block a dialog for file-name input is opened. If a file name was typed, so the
highlighted block in the actual editor window is written into this file. An possible existing content of the file
gets lost.

 AVRco Tools

E-LAB Computers Editor - 3.27

3.15.2 Edit Menu

Undo Undo the last change (Undo)
Redo Indo the last undo (Redo)

Cut Cut out thw maked block and copy it into the notebookk
Copy Cpoy highlighted block into the notebook
Paste Copy notebook to the caret position
Delete Delete symbol right of the caret or the whole block

Select All Mark block from begin upto the end of the file

3.15.3 Search Menu

Find Ctrl + F Search word (at caret)
Replace Ctrl + R Search word (at caret) and replace it
Find Next F3 Repeat last search/replace

Replace Tabs by SoftTabs Fill hard tabs with spaces
Replace Tabs by spaces Replace hard tabs by spaces

Goto Line F4 Set caret to line number n
clear all Markers Delete all marker-buttons

3.15.4 Project Menu

Load Project Opens the project dialog to load a project
Edit Project Opens the project dialog to edit a project

Project Information Opens the info dialog with the files of the project
Project options Opens the project dialog to input conditional

 compile switches.

3.15.5 System Menu

System Options Opens the System Options dialog. Show
 Compile/Assemble and Project Unit Paths can be

 selected or edited
System Admin Opens the system/control dialog

 AVRco Tools

3.28 – Editor E-LAB Computers

3.15.6 IDE Menu

General Options Opens the editor option dialog
Tabs Define of the TABs

PopUp delay determines the delay of the syntax help
Edit Keyboard Macros Opens the keyboard macro dialog

3.15.6.1 Tabs
For tabs it is distinguished between real Tabs and smart tabs. For real tabs generally a tab character is
inserted with the tab-key in the text. The item Auto Indentation here has no function. These tabs are
executed with the in the dialog TabSize specified length by the editor (pseudo spaces).

The Smart Tabs are leading to a different behaviour of the editor. For using the enter key at the end of line
anew line is inserted. The input caret jumps to the first visible letter of the line above, if Auto Indentation is
switched on. If this is not the case, the caret stays at the begin of the line. The TAB key has a double
function for Auto Indent. If it is pressed, the caret jumps to the next word begin of the line above. If there is
no word existing, the number of spaces, specified in TabSize, is filled.

Without Auto Indent always the number of "TAB Size" spaces are filled.

3.15.7 Window Menu

Arrange Icons New order of editor windows decreased to icons
Minimize all Decrease all editor windows to icon size

Window ... Do a certain editor windoe in the foreground

3.15.8 Info Menu

Help IDE Call the IDE or editor help in the context
Help Syntax Call the compiler or syntax help in the context

Info IDE Call the overview of the the IDE or editor help
Info Syntax Call the overview of the compiler or syntax help

About Display of the actual version of PED32

The IDE PED32 contains two help systems. One refers to the IDE or the editor, the other refers to the
respective compiler or assembler.

Help can be switched on by the above menu or by the F1 key. Help for the compiler can be reached by F1
context-related, the IDE-help is reached by Ctrl + F1. In dialogs the IDE-help can be reached by F1 or the
help-button ?.

 AVRco Tools

E-LAB Computers Editor - 3.29

3.15.8.1 Help IDE
For every dialog and menu-items there is a help. In case of open dialogs you can get help by the F1 key or
Ctrl+F1 or by the help-button ?. Help is corresponding to the databook in the essential items.

3.15.8.2 Help Syntax
If an online-help should be called for a term in the source program (e.g. repeat) , so the caret must be
placed to the word repeat in the editor window, then the key F1 must be pressed. Help is opened at the
position of the repeat explanation.

3.15.8.3 Info IDE
You can get an overview of the help items of the IDE by the menu "Info IDE" above. Then do the procedure
as usual, e.g. search, copy etc.

3.15.8.4 Info Syntax
You can get an overview of the help items of the IDE by the menu "Info syntax" above. Then do the
procedure as usual, e.g. search, copy etc.

3.15.8.5 About... and compiler registration
Here the actual version of IDE/PED32 is displayed. Two register fields serve to enable the compiler or the
compiler of E-LAB Computers. The procedure is enclosed as info to the respective compiler.

 AVRco Tools

3.30 – Editor E-LAB Computers

 AVRco Tools

E-LAB Computers Simulator - 4.1

4 Simulator / Debugger
by Gunter Baab

4.1 Introduction

The Simulator an indispensable tool to find logical errors in your programs.
Each program should first be checked with the Simulator.

Start the Simulator from inside the IDE with F9 or use one of the SpeedButtons

4.2 Overview – the Desktop

As usual the desktop consists of several areas:
header, menubar, toolbar, working area and statusbar.
The appearance of the working area varies depending on the selected windows (see the following
examples).

 AVRco Tools

4.2 – Simulator E-LAB Computers

4.2.1 the Header

The Header shows the project name and the used controller type:

4.2.2 the Menubar

The Menubar contains the usual PopUp menus.
See in the chapter "the Handling of the Simulator" for a detailed description of these menus.

4.2.3 the Toolbar

The toolbar contains "SpeedButtons" for many functions. In the Menu "Windows" this bar can be enabled /
disabled.
The SpeedButtons are –besides the Menubar- a further possibility to call the different functions.

As far as the mouse cursor touches a speed button you can see the meaning of this button in the Statusbar
(see chapter "the Statusbar").

 AVRco Tools

E-LAB Computers Simulator - 4.3

4.2.4 the Working Area

As mentioned, the appearance of the working area varies depending on the selected windows.
The state (size/position) of the windows is stored with the project and rebuilt at a new start of the
simulator.
The simulator distinguishes mandatory and optional windows.
The mandatory windows are always on the working area and can be minimized.

In the following example all mandatory windows are maximized.

With all mandatory windows minimized and no optional windows open you see the following
representation:

To minimize the mandatory windows use the corresponding button

To maximize these windows use a double click on the header (the name).

 AVRco Tools

4.4 – Simulator E-LAB Computers

A typical representation could be as follows:

The optional available windows depend on the used hardware and the driver imports (unused
options are greyed out).
In the following example the SwitchPort-, the LCD- and the 7-Segment driver was imported
and the corresponding windows (and the source windows) are maximized.

 AVRco Tools

E-LAB Computers Simulator - 4.5

4.2.5 the Statusbar

The statusbar is on the lower screen edge

"Status" shows hints about the available action at the actual mouse cursor position, e.g. the meaning of the
SpeedButton at the mouse cursor.

"cycles" shows the number of the executed processor cycles.
In the example above 1 cycle was executed.

"time" shows the used time (in a real system). Above 62,5 nsec., that corresponds to a clock frequency of
16Mhz.

"zero" resets the "cycles" and "time" to 0 for a new measurement.

"clock" is the frequency defined in the project.

The "Trace" area indicates an active trace (Assembler or Pascal). See the chapter "Menu Run".

At the progress bars for "Watchdog" and "Heap" you see the remaining time to trigger the watchdog
or the used / free memory of the heap memory area. These functions are in the above example
not used (see chapter “Heap”).

4.3 the Handling of the Simulator

The following chapters describe the menus of the menubar an their options.

4.3.1 Menu Projekt

4.3.1.1 Open / Save / Save as / Print / Printer Setup / Close

These options work like the "File" menu in the Windows / Office standard.

4.3.1.2 Reload / Reload EEprom

To debug the (simulated) memory areas IDATA and EEPROM can be changed.
Sometimes it is helpful to reload the original contents.
You could terminate and restart the simulator. But it is easier to use these functions.
"Reload EEProm" initializes only the EEProm area, "Reload" loads the whole project.
For JTAG Mode: see chapter "JTAG / OWD Debugging – UpLoad/DownLoad".

 AVRco Tools

4.6 – Simulator E-LAB Computers

4.3.2 Menu Breakpoints

You can set breakpoints in the "Source"- or "Disassembler"- window (see chapter "Menu Windows-Source /
Disassembler").

Hints:
the simulator "remembers" the breakpoints using absolute code addresses. These breakpoints are
retained at a restart of the simulator. If the source changed the breakpoints may be at other locations.

There are also SpeedButtons for "Toggle Breakpoint" (or function key F5) and "Show List".

In JTAG Mode there is a limit of max. 3 breakpoints: see chapter "JTAG / OWD Debugging – Hardware
Breakpoints".

4.3.2.1 Show list

Shows an overview of all active / inactive code-breakpoints:

"Line" is the source line, "Address" the address in the flash memory.

 AVRco Tools

E-LAB Computers Simulator - 4.7

By the "Edit" button or a double click on the breakpoint you can de- / activate it.

Deactivated breakpoints are shown in the source window but they do not stop the simulator anymore.
"Pass" is a counter. It is decremented every time the program passes that breakpoint. At zero the
simulator stops the program. This is not a permanent setting. It has to be set at every "break".
The other options are for future enhancements.

4.3.2.2 Reset all Breakpoints

Deletes all breakpoints in the source. Do not confuse this with the state "inactive" where the
breakpoints are still in the source but are disabled.
JTAG Hardware Breakpoints werden hier nicht gelöscht ?!?!? Sollten aber, muss ich prüfen…
Da ist noch ein Bug drin, wird noch ausgebaut. (+rh*)

4.3.2.3 Stop after ..

Here is the stop condition the number of performed processor cycles. By selecting this option
a popup window to enter the number of cycles comes up.
This option in not available in JTAG mode.

4.3.2.4 Stop on Schedule, Stop on TASK kill

These are on / off options and helpful for multitasking programming.
"Stop on Schedule" stops the simulation as far as the "scheduler" performs a task switch.
"Stop on TASK kill" stops the simulation as far as the "scheduler" has to "kill" a task. On a correctly designed
multitasking system this should not happen.
This option in not available in JTAG mode.

 AVRco Tools

4.8 – Simulator E-LAB Computers

4.3.2.5 Memory Write Breakpoints

This option stops the simulator as far as a memory address in the RAM / EEProm (a variable) is
changed.

hint:
the simulator "remembers" these breakpoints by the memory address and they are retained
at a new start. If the source file changed the breakpoints may be at other locations.

Attention:
these breakpoints are not shown in the "Show List" !!! "Show List" displays only the code breakpoints.

Use a double click to edit a breakpoint. Actually only the address is important.
"Pass" / "Condition" is for future enhancements.

The menu "Watches-Add Watch" (see below) offers a simple possibility to set a breakpoint at the address of
a variable.

When dealing around with pointers but also in common it's possible that some variables are overwritten or
destroyed without knowing the reason for this. To better find out the circumstances the Simulator is
enhanced now so that it is possible to place breakpoints onto variables.

Each time if such a variable is overwritten or changed by the application the program stops and an info
message is raised. So it is very easy to determine which part of the program or statement writes or changes
the variable.

A memory breakpoint can only placed to such a variable which is already placed into the watch window.

A double click onto the blue
editfield of a watch variable
opens the watch edit dialog.

Now the memory breakpoint can be switched on or off
in the watch edit dialog.

Breakpoints to records, arrays and pipes are not
possible. But it’s possible to place a overlay variable
onto such a variable so these types can be included
indirectly.

 AVRco Tools

E-LAB Computers Simulator - 4.9

In the Breakpoints menu there is the item memory write breakpoints
which shows an overview of all memory breakpoints.

It’s also possible to set a Memory Breakpoint to an absolute address.

Then this absolute address must be edited here.

If in a debug run a write access to such a variable is detected the
execution is halted immediately and the info on the left pops up.

 AVRco Tools

4.10 – Simulator E-LAB Computers

4.3.2.6 Test I/O

Not yet implemented. For future enhancements.

4.3.3 Menu Watches

To select the variables to watch (show their content in the simulator) and select their presentation.
In JTAG mode you must note the chapter "JTAG / OWD Debugging – UpLoad/DownLoad" !

4.3.3.1 Add Watch

The simulator lists here all global variables. The variables are listed at the "Globals" tap. At the "System" tab
you find all system variables, at the "Unit" tab the (global) variables that are defined in units. Local variables
of procedures and functions are not available. These are created at runtime when the corresponding
procedure or function is running.

The button "Memory Break" easily permits a setting of a "memory write breakpoint".
"Add to WatchList" and "Remove Watch" adds or removes the selected variable to / from the "WatchList".

Hint:
the "WatchList" is a mandatory window and described in the chapter "Windows-Watches".
With the "Edit" button you can change the actual value of a variable, select the presentation
(e.g. decimal / binary / hex) and also define a "memory write breakpoint".

Another possibility to add watches is a double click on a variable in the list. A double click on a variable that
is already in the "WatchList" opens the "Edit" menu.

Hint:
You may also click in the "Source" window on a variable to add/delete it to/from the "WatchList" or
to edit it (see chapter "Windows-Source").

 AVRco Tools

E-LAB Computers Simulator - 4.11

4.3.3.2 Delete all Watches

For a fast delete of the "WatchList".

4.3.3.3 Popup Raw Display

This is a "check box selection" for complex variables (structures / arrays). If active, a double click on such a
variable in the "WatchList" shows a hex memory dump of it.
In JTAG mode this also updates the variable.

4.3.3.4 default Watch representation

Shows a matrix of all variable types (byte, word, integer, ...) to select the possible default representations
(hex, decimal, binary, ...). An individual selection is done in the "Edit" Menu (see chapters "Watches-Add
Watch" and " Windows-Watches").

4.3.4 Menu Run

To start the simulation (in the desired manner). In addition there are various settings for the different ways of
the simulation and selections to enable traces. In JTAG mode traces are not possible.
For the majority of these important functions there are also SpeedButtons.
In single step mode the middle SpeedButtons

select Pascal (SRC – Source Step) or Assembler (ASM – Assembler Step) stepping.

In JTAG mode you must note the chapter "JTAG / OWD Debugging" !

4.3.4.1 Reset processor Ctrl+F2

Sets the program counter to 0 to restart the simulation from the beginning. Corresponds to a hardware reset
on the real system. The processor registers are loaded with the specified initial values.

4.3.4.2 Go F9

Starts the simulation with maximum speed.

 AVRco Tools

4.12 – Simulator E-LAB Computers

4.3.4.3 Goto cursor pos F4

Starts the simulation with maximum speed until the cursor position in the source window or a breakpoint is
reached.
warum ist die Option "greyed out" und nur der entsprechende SpeedButton geht?
 klärt rh noch. Wird noch freigegeben. Kommentar bitte stehen lassen……….(+rh*)

4.3.4.4 Stop simulation F2

Stops the simulation.

4.3.4.5 Step into F7

Performs a single step. Functions, procedures and loops are also executed in single steps.

4.3.4.6 Step over F8

Performs a single step. Functions, procedures and loops are not executed in single step mode
(i.e. are executed in a single step).

4.3.4.7 Step out F6

Executes the current function / procedure / loop with maximum speed and stops (as far as there is no
previous break condition).

4.3.4.8 Multiple Steps Shift+F9

Executes a predefined number of steps with maximum speed.
See below: "Multiple step value".

4.3.4.9 Animate Ctrl+F9

Starts the simulation with reduced speed.
See below: "Animation speed".

4.3.4.10 Multiple step value

Set the number of steps for "Multiple Steps" (see above).

4.3.4.11 Animation speed

Set the speed for "Animate" (see above).

 AVRco Tools

E-LAB Computers Simulator - 4.13

4.3.4.12 Enable Trace ASM / Enable Trace HLL

To track a trace either on Assembler or on Pascal level.
Hints:
to view the trace see chapter "Windows-view Trace".
Assembler traces show in addition the Pascal source statements. During a trace session you can change
from ASM to HLL or "disable" (and resume) the trace tracking.
In JTAG mode these functions are not available.

4.3.4.13 Clear Trace buffer

Clears the trace buffer that is otherwise it is constantly updated.
In JTAG mode this functions is not available.

4.3.4.14 Call Stack Ctrl+F3

Shows the actual nesting of the return stack (the return procedure- / function names).
In JTAG mode this functions is not available.

4.3.5 Menu Extern

You find here all processor external devices that can be simulated (in opposite to e.g. the ports).
Except "Interrupts" all items are also in the menu "Windows". See chapter "Menu Windows" for the
descriptions.

4.3.5.1 Interrupts

To simulate the external interrupts (at the processor pins INT0, INT1, ...).

This function is actually not available.

 AVRco Tools

4.14 – Simulator E-LAB Computers

4.3.6 Menu Search

Is used together with the windows "Source", "iData" (the RAM memory), "EEProm" or "Code"
(the Flash memory) and maximizes these windows if necessary. To search for specific locations (addresses),
hex patterns or text.

4.3.6.1 Show Code at..

Show the flash content at a specified address. Maximizes the "Code" window if necessary.

4.3.6.2 Show Data at..

Show the RAM or EEProm content at a specified address. Maximizes the "iData / EEProm" window
if necessary.

4.3.6.3 Search Code hex pattern..

Searches a hex pattern in the code area. Maximizes the "Code" window if necessary.

4.3.6.4 Search Data hex pattern..

Searches a hex pattern in the data area. Maximizes the "iData / EEProm" window if necessary.

4.3.6.5 Search in Source F3

Performs a full-text search in the source file. The usual options (forward, backward, whole word etc.) are
available. Maximizes the "Source" window if necessary.
warten auf Antwort von rh – derzeit keine Maximierung von Source Kommt noch
und bleibt deshalb als Hinweis stehen. Das Source Window wird zukünftig der gleiche Editor wie beim PED
sein, nur read-only. Aber Syntax-highlight, Kommentar Beachtung etc. (+rh*)

4.3.7 Menu Configure

To make some settings concerning the desktop and the simulation.

4.3.7.1 Show Hints

Enables / disabled the popup help at the mouse cursor. You can also see these hints in the statusbar
on the lower left corner of the screen.

4.3.7.2 Save as default

Concerns the positions and alignments (maximized / minimized) of the windows.

 AVRco Tools

E-LAB Computers Simulator - 4.15

4.3.7.3 Config with default

Restores the positions and alignments (maximized / minimized) of the windows.

4.3.7.4 COMport [ICE..Monitor]

To configure the debug hardware if any connected.

"Simulator": no hardware connected that supports debugging

"ICE200": a Atmel ICE200 Emulator is connected. "Stop Timers" stops the timer of the controller
as far the simulation is stopped – e.g. at a breakpoint.
The ICE200 communicates via a serial interface with the PC. You also can configure this interface.

"onChip JTAG-ICE", "onChip OWD-ICE": the internal debugging machine of the controller is used.
JTAG (already implemented) is the standardized JTAG debug Interface (JTAG = "Joint Test Action Group").
"OWD" is reserved for the future "One Wire Debug" Interface. "Stop Timers" stops the timer of the controller
as far the simulation is stopped – e.g. at a breakpoint.
"Popup Software Breaks" shows an info window at a software breakpoint.
"Check Port" is with hardware debugging mandatory. It also initializes the debugger.

The JTAG programmers communicate via a USB interface with the PC. You can use the "USB Timeout" to
optimize the speed (be careful!).
"Power Supply for OWD or JTAG mode" selects the programmer as current source for the target.
The button "Check Port" searches all available interfaces for a programmer.
As the programmer is also initialized by that button, it is a mandatory selection!

 AVRco Tools

4.16 – Simulator E-LAB Computers

4.3.8 Menu Properties

As the simulator can not reach the speed of a real system, some functions are working with inconvenient
effects. The following "check box switches" help to improve this behaviour.

4.3.8.1 Short mDelay

"mDelays" are (in the real system) delays in the range of milli-seconds.
In the simulator they can take quite a lot of time. So this switch shortens these delays.

4.3.8.2 Fast RTC

Is used to increase the speed of the realtime clock for a more realistic simulation of the RTC driver.

4.3.8.3 Short Beep

Adjusts the duration of the sound driver output to the lower speed of the simulator to archieve a more
realistic simulation.

4.3.9 Menu Windows

Is used to open optional windows and to get informations about the multi tasking system.
If the corresponding driver is not loaded (and the function is not available) the option is greyed out.

4.3.9.1 Toobar

Enables / disables the toolbar with the SpeedButtons.

4.3.9.2 Arrange icons

Arranges the headers of the minimized mandatory windows at the lower screen edge.
Optional windows are completely closed (not minimized to headers or icons).

 AVRco Tools

E-LAB Computers Simulator - 4.17

4.3.9.3 Source

Is a mandatory window.

"Main" contains your Pascal source. The windows "Unit" and "Include" are at first empty.
By a double click in one of these windows you select a unit or include file to display.
As a prerequisite you must have the unit as source file (not only as a precompiled .PCU).
If your program branches to a unit or an include this file is automatically loaded in the corresponding window.

Furthermore a right click offers the option "Find Text" to search.
If the text cursor points to an executable statement the options "Set PC to line pos" (so the next single step
will execute this statement) and "Goto line pos" (run the program to the actual cursor position) are available.
A click on the small blue circles (in the left most column) can be used to set / reset a breakpoint.
A double click on a variable adds this variable to the "Watch Window".

 AVRco Tools

4.18 – Simulator E-LAB Computers

4.3.9.4 Work Registers

Is a mandatory window.

Useful for debugging on Assembler level. It shows the internal processor registers, the symbolic names that
uses the AVRco and the external interrupts.
Note that you can here also change the contents of the registers.

In JTAG mode see the chapter "JTAG / OWD Debugging – UpLoad / DownLoad".

 AVRco Tools

E-LAB Computers Simulator - 4.19

4.3.9.5 Processes

Is a mandatory window.

In the upper example there are 3 nested procedures. The lowest one has 3 local byte variables.
You see the stack and frame content when the breakpoint was reached. The positions of the stack /
framepointer are blue highlighted.
The buttons "state" and "SysTick" are of interest for multitasking and explained in the chapters
"Windows – view Process states" and "Windows – SysTick / Scheduler Timings".

4.3.9.6 Disassembler

Is a mandatory window.

Disassembler shows the Assembler code. The actual position of the program counter is highlighted in bright
blue, the position of the text cursor in dark blue. By a click on a line in the source (a line that generates code)
the disassembler window shows the corresponding code area. In the same way a click in the Assembler
code shows the correspondent part in the source window.
Use a right click to set the program counter to the address of the statement at the mouse cursor.

 AVRco Tools

4.20 – Simulator E-LAB Computers

4.3.9.7 Code memory

Is a mandatory window.
Shows a hexdump of the Assembler code. With right click you can select different presentations and use a
search function.

4.3.9.8 Data memory

Is a mandatory window.
Shows a hexdump of the RAM and the EEProm memory. You also can change these areas.
A right click makes a search function available. In JTAG /OWD mode there are additional functions
to Upload / Download these memory areas..

4.3.9.9 Watches

Is a mandatory window.
Shows the actual value of variables. In JTAG mode see the chapter "JTAG / OWD Debugging" !
By a double click you can change the value of a variable and select the presentation mode (hex,
decimal, …).
For a better overview the variables are grouped under the tabs "Global", "EEprom", "Unit", "Local"
and "System".
Under the local tab you can -by a right click- select to display (to upload) the local variables in
JTAG mode at a stop inside a procedure or function.
"check Frame and Stack" uploads in JTAG mode when the window is updated also the stack-
and frame pointers and checks these for an overflow condition.

A right click in the other windows opens a menu to add or remove watches and to set memory
breakpoints. The option "Refresh all Watches" is very important in JTAG / OWD mode.

4.3.9.10 Ports

Is a mandatory window.
Shows the available port registers (PortX, PinX, DDRx) of the used controller with their symbolic names. You
also can modify the contents for debugging purposes.

4.3.9.11 Peripherals

Is a mandatory window.
Shows all available registers of your controller sorted by their addresses. Except the read-only registers
you can also change their contents. This window is useful for debugging of Assembler routines.

 AVRco Tools

E-LAB Computers Simulator - 4.21

4.3.9.12 view Trace

Shows the traces (SRC / HLL) that can be enabled in the menu "Run".
In the following example the lines 78, 79, 80 were executed with HLL trace enabled. The line 81
was executed with ASM trace enabled.
In JTAG mode traces are not possible.

4.3.9.13 view Process states

This window is used to get informations about the MultiTasking system.
You can check the priorities of the tasks / processes and the max. used stack and frame memory
("StkPeak" / "FrmPeak"). You should simulate the application for a longer time and try to simulate
all possible events (I/Os, external interrupts etc.).
This function is not available in JTAG mode.

 AVRco Tools

4.22 – Simulator E-LAB Computers

4.3.9.14 SysTick / Scheduler timings

Is used to check the MultiTasking system by displaying the used resources of the SysTick and the
Scheduler.
This function is not available in JTAG mode.

4.3.9.15 Terminal I/O
Import: SerPort / SerPort2
Is an optional window to debug the communication via the serial interface(s).
The actual controllers come with USARTS that support 9 databits (e.g. for multi processor
communication). You select the value of the 9th bit in the input area. To enter hex values use the
Ctrl + 0...9, A...F keys.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

 AVRco Tools

E-LAB Computers Simulator - 4.23

In the upper (grey) window are the outputs of "SerOut". In the lower window the user inputs that
are read via "SerInp" and that come in the real system from the serial interface.

4.3.9.16 ADC
Import: ADCPort
Is an optional window to adjust the analog values at the ADC inputs and the voltage levels at the
AIN0 and AIN1 pins of the analog comparator.
To read the converted input of channel "i" the program uses "GetADC(i)". With only one channel
defined the program has to use "GetADC" (without an "i").
The automatic functions (Sine, Triangle, ...) are not yet implemented and for future enhancements.

Controllers with 10 bit ADC have 2 result bytes. By default the result is right adjusted (the high byte
contains only the 2 most significant bits). Only this mode is supported by the simulator.
The optional left adjusted representation (the high byte contains the 8 most significant bits) is not
supported.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

 AVRco Tools

4.24 – Simulator E-LAB Computers

4.3.9.17 KeyBoard 4x4
Import: MatrixPort
Is an optional window to simulate a 16 key matrix keyboard.

A right click on any key opens the window "KeyBoard Setup" to enter individual key names and
to define one set of radio buttons.
There are a lot of functions to read the keys e.g. "ReadKeyBoard".
The keyboard driver has also a memory function to avoid the necessity of a permanent keyboard polling.
Furthermore the system exports a semaphore "KeyBoard" to provide an optimal support of Multi Tasking
(see procedure "WaitSema").
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.18 KeyBoard 8x8
Import: KeyPort8
Is an optional window like the "KeyBoard 4x4". This keyboard has always 8 rows and up to 8 columns.
Radio Buttons are not available.
There are a lot of functions to read the keys e.g. "ReadKeyBoard8".
The keyboard driver has also a memory function to avoid the necessity of a permanent keyboard polling.
Furthermore the system exports a semaphore "KeyBoard8" to provide an optimal support of Multi Tasking
(see procedure "WaitSema").
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

 AVRco Tools

E-LAB Computers Simulator - 4.25

4.3.9.19 LCD display
Import: LCDport
Is an optional window that simulates one or two LCDs. Supported are LCDs with 1,2 or 4 lines and
up to 40 characters per line that are connected to 7 or 8 port pins. Supported display controller
types are HD4470, HD66712, KS0070 or KS0073.
By a right click you can select the colours of the background and the pixels (pixel on and off colour).
An output is done by the procedure "LCDout". User defined characters are supported.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.20 LCD_M display
Import: LCDmultiPort
Is an optional window that simulates up to 8 LCDs. Supported are LCDs with 1,2 or 4 lines and
up to 40 characters per line that are connected via a I²C I/O expander. Supported display controller
types are HD4470, HD66712, KS0070 or KS0073.
By a right click you can select the colours of the background and the pixels (pixel on and off colour).
An output is done by the procedure "LCDout_M". User defined characters are supported.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.21 7seg display
Import: Disp7sPort
Is an optional window that simulates 1 to 8 7-segment displays. By a right click you can select the colours of
the background and the segments.
The possible modes of connection are multiplex mode or via latched shift registers.
An output is done by "DispOut" (as far as possible there are also alphanumerical characters displayed).
Furthermore there are a lot of functions like blinking etc. available and you can create own character sets.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.22 I2C 7seg display
Import: I2C_Disp7
Is an optional window that simulates up to 16 7-segment displays that are connected via I²C expander.
You can build up to 4 groups of displays and each group is limited to max. 8 digits.
By a right click you can select the colours of the background and the segments.
An output is done by "I2C_Disp7Out" (as far as possible are also alphanumerical characters displayed).
Furthermore there are a lot of functions like blinking etc. available and you can create own character sets.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

 AVRco Tools

4.26 – Simulator E-LAB Computers

4.3.9.23 14seg display
Import: Disp14sPort

Is an optional window that simulates an 2..8 digit 14-segment display that operates in multiplex mode.
By a right click you can select the colours of the background and the segments.
An (alphanumeric) output is done by the procedure "Disp14out". Furthermore there are a lot of functions like
blinking etc. available and you can create own character sets.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.24 LCD Graphic
Import: LCDgraphic
Is an optional window to simulate graphical displays. By a right click you can select the colours of the
background and the pixels.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

The AVRco comes with a lot of high level functions (textual and graphical). You only have to define the
User Device "GraphIOS" containing basic functions (e.g. "write Byte" or "set Pixel").
For many of the most common display controllers (e.g. T6963, SED1531, HD61202...)
the "GraphIOS" is already contained in examples.

 AVRco Tools

E-LAB Computers Simulator - 4.27

4.3.9.25 File System
Import: FileSystem
Is an optional window.
The drives are simulatted in the memory of the PC and this window corresponds to a disk editor
for the defined drives (max. 4: Drive A to Drive D).
You also can change the contents (in hex or ASCII area). By a right click you have an option to
format the drive.

"FileSystem" is very simple and about 6 kByte Flash and 500 Byte Ram are sufficient.
Suitable hardware could be external SRAM, EEPROM, Flash, a Foppy, a Harddisk etc.
The AVRco comes with a lot of high level functions (e.g. create / delete files, read / write, set file
attributes, etc.). You only have to define the User Device "FileIOS" containing the basic functions.
The "FileIOS" for the Atmel Flash AT45DB161 is contained in an example.
As the "FileSystem" has a proprietary structure the devices are not compatible to DOS / Windows.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.26 FAT16
Import: FAT16
Is an optional window.
The drive is simulatted in the memory of the PC and this window corresponds to a disk editor
for the logical drive. You also can change the content (in hex or ASCII area). By a right click you have
an option to format the drive.
In contrast to the "FileSystem" this drivers is compatible to the PC file system. A min. file system needs
about 12k Flash and 1k Ram. Supported are MMC, CF Flash Cards and standard IDE drives.
For other hardware there is a general driver included.
The AVRco comes with a lot of high level functions (e.g. create / delete files, read / write, etc.).
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

 AVRco Tools

4.28 – Simulator E-LAB Computers

4.3.9.27 Incr Counter
Import: IncrPort
Is in optional window to simulate an Incremental Encoder connected to the input of the analog comparator.

The green/red arrows are used to control the actual value ("turn the encoder"). The driver uses the interrupt
so changes are only possible in "Run" mode.
In "auto" mode the encoder runs automatically trough the whole scale. The max. scale depends on the
selected resolution (16 or 32 bits). You can use the "pos trip" / "neg trip" to limit the scale. “Speed” is
used to set the “rotation speed”.
The driver is internally working with a 16 or 32 bit counter. "Get / Clear / SetIncrementalVal" is used to
read / delete /set this counter.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.28 Frequ Counter
Import: FreqCount
Is an optional window that simulates the Frequency Counter driver. Only the first channel can be
simulated. Actually there is no simulation of the optional 2nd channel "FreqCount2" available.

 AVRco Tools

E-LAB Computers Simulator - 4.29

With the slide switch on the right you select a frequency range 0...0,1Hz, 0...1Hz, etc. up to 0...1MHz.
The poti is used to select the frequency. The small button on the lower left corner starts / stops the frequency
counter.
The frequency counter can also be used for pulse width measurement. The corresponding functions
to read the value are "GetFreqCounter" or "GetTimeCounter".
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.29 I2C PortExpand
Import: I2Cexpand
Is an optional window to simulate up to 8 ports that are connected via I²C expander. The used PCA9554A
expanders have the same internal registers as the processor ports (PORT / PIN / DDR)
and these registers are displayed the same way as the internal ports in the "Ports" window. The symbolic
names are "PORT 0...7" / "PIN 0...7" and "DDR 0 ...7". You can also change the value of the port bits.
Further controls are not possible.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.30 System Blinker
Import: SysLEDblink
Is an optional window to simulate the SystemLed driver. There are no controls available.
You access the driver via several functions (e.g. "SysLEDon", "SysLEDflashOn" etc.).
With "SysLedFlashMsg" you can signal a blink pattern (e.g. for Error Codes).
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.31 SwitchPort
Import: SwitchPort1 / SwitchPort2 / SwitchPort_G
Is an optional window to simulate the SwitchPort driver. Only the imported SwitchPorts are displayed
(the following screen shot shows an example with all SwitchPorts imported).

 AVRco Tools

4.30 – Simulator E-LAB Computers

A right click on any key is used to enter individual key names and to define "auto release" keys.
You can read the (debounced) keys with the functions "INP_STABLEx" and "INP_RAISEx" or the
the whole (bebounced) port with "PORT_STABLEx".
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.32 RC5receiver
Import: RC5Rxport
Is an optional window to simulate an infrared receiver of remote controls.
You define in a small window the message to send (to be received).
In welchem Mode? Standard oder Extended? Wenn das abhängig von RC5mode ist, warum sind
dann bei "rc_6bit" CMDs > $3F einstellbar? Muss ich prüfen Kommentar stehen lassen.
Es gibt den 6bit und den 7bit Mode. Bei 6bit ist der maxWert = $3f und bei 7bit = $7f
Bitte bei Gelegenheit nochmal checken! Auch bei 6bit Mode konnte ich Werte > $3f einstellen! (+rh*)

You enter the value in hex. A checked "toggle" sets this bit = 1. The button "send" starts / stops
the transmission. The function "RecvRC5" reads the received data.
A simulation of a transmitter is actually not implemented.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.33 Servos
Import: ServoPort
Is an optional window to display up to 8 digital servos. It shows the servo positions of the channels
0 to 7 in percentage of (pos./neg.) maximum range. There are no adjustments to made.
The program controls the servos via the procedure "SetServoChan".
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.34 Heap
Import: Heap
Is an optional windows to show the actual usage of the heap memory.

You allocate heap memory with the function "GetMem". This function returns a pointer (heap is
only accessible be pointers).
The function "FreeMem" is used to deallocate the memory.

 AVRco Tools

E-LAB Computers Simulator - 4.31

Each memory block on the heap uses 4 management bytes. These addresses are shown at "descr@".
"data @" shows the start address of the data area, "size" the number of used data bytes.

The upper example shows:

- the heap area starts at address $00AF
- the first used block (a single data byte) uses the address range $00AF to $00B3 (including) = 5 byte
- the second block (11 data bytes) uses 15 bytes
- the heap is fragmented (caused by a "FreeMem"). There is a free area between $00C3 and

$00DE (including) = 28 bytes = a block of 24 data bytes
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.35 Stepper
Import: StepPort
Is an optional window.

Shows the speed of a stepper motor in steps/sec. as bar and decimal value.
The scaling of the bar graph is between 0 and max. speed entered in the source by the definition of
"StepMaxFreq" .

The actual position (in steps) and the actual mode are displayed:

Mode "StepUp": step ramp up (increasing speed)
Mode "StepDown": step ramp down (decreasing speed)
Mode "StepStop": motor is stopped
Mode "StepRun": stepping with max. speed

There are a lot of functions to control the power drivers:
"StepperOneCW": one step clock wise
"StepperOneCCW": one step counter clock wise
"StepRampCW": step up ramp clock wise
etc.

The StepPort is used to control H-bridge drivers. To control ICs with intelligent builtin functions
there is in addition a UserPort available.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.10 Menu Help

Only the "Info" function to display the actual version of the simulator is implemented.

 AVRco Tools

4.32 – Simulator E-LAB Computers

4.4 SysTick and Scheduler timings
The SysTick is the muscle of the AVRco system. It does most of the background jobs ie. debouncing of
ports, readout of the ADC, software RTC, handling some Timeouts, Beeper, Blinker, refresh of LED-
Displays, software Timer, Keyboard scan etc. With MultiTasking the Scheduler is also a part of the SysTick.
In common, with extreme and heavy loaded systems the SysTick must do an extreme heavy job.

Because the SysTick is always a hardware timer interrupt (Timer0 or Timer2) the global interrupt is
completely disabled until the SysTick has finished it’s job. In many cases this disabling is not critical because
the other interrupts will be somewhat delayed and will be accepted and processed after the SysTick job is
done. But with interrupt bursts, for example from a rapidly changing external Int0 etc. it’s possible that an
interrupt is not processed because the next one from the same source is already pending. The system will
not become instable but there will be some missing informations.

This can be very important with a serial interface (Rx with buffer). If the interrupt is disabled more than two
durations of a character transfer the first received character in the UART is overwritten by the second one.
New AVRs have a double buffered receive register so this problem is very relaxed now. But also here it is
possible to have character losses when working with very high baudrates, heavy duty SysTick job and slow
processor clock. So it always makes sense to run the CPU with it’s maximum speed. With many driver
imports this is a must. The kind of application is not much important, but the processings in the SysTick are
the main reasons.

It’s impossible to have any formula which shows the interrupt disable time in the SysTick. There are too
many different factors, depending of the count and type of the imports. But knowing this time is essential.

To get a coarse number (clock cycles or usec) the AVRco Simulator supports this measuring. While a debug
session is running it counts the CPU cycles which have elapsed while the SysTick job is processed. The
smallest and the largest values are stored. But this can only be done in the simulation mode, with ICEs and
ROM Monitor this is not possible. The debug session should execute all states of the application, all
functions and procedures should be executed in order to get real results.

After a sufficient and long simulation the gathered values can be displayed. To do this the menu “Windows”in

the Simulator must be opened. Then click the menu item
SysTick/Scheduler timings.

This opens the window shown below. Here the sampled
minimal and maximal interrupt disable times in the
SysTicks are shown.

The picture shows a maximum disable time of about 23usec. With multiprocessing and slow processor clock
and much imports this value can easily exceed 100usec. The consequences then are: also with obviously
simple applications it makes sense to let the CPU run at it’s maximum speed.

 AVRco Tools

E-LAB Computers Simulator - 4.33

4.5 Determine Frame and Stack usage with the Simulator
An absolute critical (deadly) item with a system design is the definition of the Stack and Frame sizes.
Experienced programmers can do an estimation which may work. But with small resources (RAM) a tuning
becomes necessary. If the Stack or Frame is too small this can lead to bad surprises, sometimes after weeks
or months if several circumstances meet.

A Stack or Frame overrun/violation mostly shows an irregular bevaviour of the program, calculation have
wrong results. With text displays destroyed strings are shown. This is because string operations and
convertizing is extremely stack and frame intensive.

Because there are no common values and also there is no formula for calculation, the necessary stack and
frame size must be determined by a Simulator session. But here the missing environment and reality is much
more a problem. Some procedures, functions, processes and tasks are only executed if certain external
events occur. This is not known by the Simulator. So it’s the job of the application programmer to invoke all
these events in a proper manner. For example manipulating ports etc. in the Simulator.

The AVRco Simulator not only checks all stack and frame operations during a simulation run but also records
the maximum (peak) values separately for all existing stacks and frames. After a substantial simulation run
these informations can be displayed in two ways. Either clicking the
state button of the Stack/Frame window or by the view Process states item of the Windows menu.

Then the dialog below
opens which shows a good
overview of the stacks and
frames used in this app.

With a long and indeepth
simulation run a peak value
can be used as a good
maximum value.

But to be absolutely sure
and for security reasons this
value should be increased
upto 50%

 AVRco Tools

4.34 – Simulator E-LAB Computers

4.6 Frame and Stack check at runtime
Big processors of the 16 and 32bit range have an internal hardware check to catch stack and frame
overflows at runtime and then notify the app by a trap or interrupt. But unfortunately the AVR doesn’t have
this beneficent feature.

It’s possible to implement this in software but first tries showed that the code size is increased by upto 50%
and the application slows down in the same range. The reason for this is that each PUSH and each POP
needs a stack pointer check, otherwise this check will be useless. The same is also true with the
FramePointer R28/R29.

But with a few small tricks there is a practicable way. It’s much less secure as a continously hardware or
software check but it’s useful.

The checks can be implemented in 2 steps. The first simple one is a system function which exactly knows
where each stack or frame begins and where it ends. With a call of this function it checks the entire
stack/frame area starting with the lowest address (top-of). An unused byte must show a “00“. If this location
was used by the stack/frame so it mostly shows a value <> “00“. But this is not absolutely true because there
could be a push of a “00“. So the function checks all memory locations of this stack/frame until a value <>
“00“ is read. The count of the zeros found determines the obviously unused area. The function returns this
value as it’s result.

Check of the stack and frame of the main program with a multitasking and non-multitasking environment:

 Function GetStackFree : word;
 Function GetFrameFree : word;

Check of the stack and frame of processes and tasks in a multitasking environment:

 Function GetStackFree(prcs : Process) : word;
 Function GetFrameFree(tsk : Task) : word;

4.6.1 Extended stack and frame checks
An enhanced version places some patterns (word) at the bottom end of the stacks and frames. If this word
has changed so it’s clear that an overflow happened. In this case the function always returns with “-1“.
Otherwise the count of the unused bytes is returned. A small driver must be imported.

From System Import LongInt, StackChecks, ..;

Check of the stack and frame of the main program with a multitasking and non-multitasking environment:

 Function CheckStackValid : integer;
 Function CheckFrameValid : integer;

Check of the stack and frame of processes and tasks in a multitasking environment:

 Function CheckStackValid (prcs : Process) : integer;
 Function CheckFrameValid (tsk : Task) : integer;

It must be clear that that it’s impossible to detect the reason or location which caused the stack or frame
violation. But at least the presence of an overflow can be determined.

An common problem with all such kind of tests is always “what to do“ if such a problem happens? A screen
message like a PC is impossible because it’s not present and will not work because in most cases the
system is instable caused by the stack or frame overflow.

But with an ICE this still makes sense. The memory can be read out and assembler single stepping still
works. But at least the knowledge that a stack or frame violation happened is very useful.

 AVRco Tools

E-LAB Computers Simulator - 4.35

4.7 JTAG / OWD Debugging
 implemented with great support from Victor Chekrygin

Take care with the programmer software: you must also select the JTAG mode at
"Options – Programmer options"!

4.7.1 UpLoad / DownLoad

An UpLoad/DownLoad of the data takes up to one minute. This is mainly caused by the primitive debug
machine of the controllers.

This is the reason why, at a breakpoint, not all data are automatically refreshed.
If you need the actual data you must click the green arrow in the toolbar.
Hint: this button is only available if JTAG debugging is active.

This click opens the window below:

You can select the different areas to "Upload" (from controller to simulator) or to "Download"
(from simulator to controller).
By the "check-boxes" at "Upload and Update mode at breaks" you can select an automatic upload
of the registers/ports/watches. Note that the complete RAM ($IDATA) is not updated by this.
By a double click on the register names in the window "work Registers" you can selectively update
individual registers and change their values.
A double click in the window "watches" updates all watches. A double click on a complex variable
(array / structure) updates the whole variable.

 AVRco Tools

4.36 – Simulator E-LAB Computers

4.7.2 Hardware Breakpoints

With activated JTAG debugging there is another button in the toolbar available:
It opens a window to define the max. 3 hardware breakpoints in JTAG mode (the maximum number is
restricted by the implementation of the debugging system inside the controllers).

"Standard" breakpoints are unrestricted settable in program code.
"Extended" breakpoints are stopping the simulator at a memory access. "Breakpoint modes" select the
different accesses.
"masked" breakpoints are also concerning the data memory. You can select a whole area of addresses. A
binary 0 in the mask marks a "don't care" bit.
e.g. in the upper example (if you select "1 standard, 1 masked"):
addr = 04D1, mask = FFFF one break condition at 04D1
addr = 04D1, mask = FFFE (bit 0 = don't care): 2 break conditions at 04D0 and 04D1.

 AVRco Tools

E-LAB Computers Simulator - 4.37

4.7.3 Tips and Notes for JTAG Debugging

take care to keep the firmware on your ISP on the actual state !
Most enhancements need a firmware upgrade.
(Firmware Download/Update into the ISP-USB ICE only with external 5Volt supplied to the Target plug!)

The update wait time after a Break or a Step depends of the count and complexity of the watches.
Many watches, much waiting.
The automatic display of local vars in Procedures/Functions can be disabled to save time (right mouse click
into the watch window).

The JTAG Debugger optional supports Stack and Frame overflow checks with function calls.
But this is only possible after a single step, a program stop or a breakpoint.
Because also this causes a big data traffic between the PC and AVR this checks are disabled by default.
Enable it in the "Local watch" window with a right mouse click.

Support the debugger in it's heavy duty job and write only one Pascal statement into one source line.
It will respond with a faster stepping rate.

All files of the system must be synchron in order to do a safe JTAG debugging.
Any change in the source code ohne without a re-compile and Flash download can resulkt in a very strange
behaviour of the debugger.

In the setup dialog of the JTAG-ICE there is a control element for the USB-Port. It supports fine tuning some
PC dependant Timeouts.
The control should be set to long with the first tries.
After having stable connections it can be moved into the short direction.
But the speed improvements are not very high, so please do not overrun the USB connection.

4.8 Compiler Switches and the Consequences

4.8.1 {$D+} {$D-}

Enables / disables debug informations. If disabled the following statements can not be processed in single
step mode.

4.8.2 {$E+} {$E-}

If disabled the following statements are not executed by the simulator. E.g. can be helpful at long mDelays

 AVRco Tools

4.38 – Simulator E-LAB Computers

 AVRco Tools

E-LAB Computers LookUp Table - 5.1

5 Lookup and Interpolate

5.1 Nonlinear functions of sensors
Many sensors and other functions show a nonlinear curve. This means that the relation between an input
value and the corresponding output value is not linear. Examples: PT100, PTC, NTC, light-detectors, and
also diodes. This is only a very small count of nonlinear sensors. Normally the measure result has a fixed
relation to the external events. The temperature for example. But in many cases this relationship is not
linear, but logarithmic, cubic etc. A PT100 shows a resistance of 100 Ohms at 0degC, at 50degC 124Ohms
and at 100degC 143Ohms. The relation between temperature and the resistance value is nonlinear.

There are two ways to calculate the temperature from the resistance:

1. With a proper formula, which mostly is a complex thing, one can calculate the the temperature which
 corresponds with the resistance.
2. Build a so called LookUp-Table. Insert in steps resistance values and the related temperature

values. Access the table with the resistance value as an index. The result is the temperature. If the
input value reaches from 100 to 200 there must be 100 value pairs in the table. More difficulty is a
large span of the input values (0 to 1023). Then the table must have 1024 entries.

5.2 Linearising
The herein used implementation is table based, with paired values (search/result). The LookUp algorithm
searches with a known value in the table until either this value is found or this argument fits between
two values. The searching is done with a binary search function for best speed results.

If a proper value(s) is found it will be linear interpolated. These method allows short tables, dependent
of the required accuracy. If the count of the value pairs is relative high, the linear interpolation results in an
acceptable accuracy.

5.2.1 System Functions:
 function InterPolX(const LookUp : pointer; x : integer; var y : integer) : boolean;
 function InterPolX(const LookUp : pointer; x : longint; var y : longint) : boolean;
 function InterPolX(const LookUp : pointer; x : float; var y : float) : boolean;

 function InterPolY(const LookUp : pointer; y : integer; var x : integer) : boolean;
 function InterPolY(const LookUp : pointer; y : longint; var x : longint) : boolean;
 function InterPolY(const LookUp : pointer; y : float; var x : float) : boolean;

The pointer must point into a table in the ROM. The second argument is the search value. It’s type defines
the operation (Integer, LongInt or Float) of the functions. The result is placed into the location of the third
argument, if the function was succesful.

 AVRco Tools

5.2 – LookUp Table E-LAB Computers

5.3 LookUp Table definition and import
The parameter const LookUp : pointer which must be passed to the functions, is a Pointer which must
point to a ROM constant table. The table should be defined in this way:

const
 IntLookUp : array[1..(size * 4) + 3] of byte = FileName;
 // size point.x point.y of integer, 3bytes info

 LongLookUp : array[1..(size * 8) + 3] of byte = FileName;
 // size point.x point.y of longint, 3bytes info

 FloatLookUp : array[1..(size * 8) + 3] of byte = FileName;
 // size point.x point.y of float, 3bytes info

The array definition is only a place holder for the binary file which must be loaded. The parameter Size
defines the count of the x/y-datapairs and the following multiply factor (4 or 8) is the count of bytes needed
for one datapair (sizeOf(integer), sizeOf(LongInt) or sizeOf(float)). The three bytes info contain the used
data type and the count of data pairs.

Example for non-linear sensors which are predestinated to be used with a Lookup Table linearisation.
There is also a sample program in the AVRco installation using this schematic/hardware.

 AVRco Tools

E-LAB Computers LookUp Table - 5.3

5.4 Creating the LookUp Table with CurveGen
As a support tool for the creation of the lookup table a Table Generator CurveGen is included. With it's help
one can interactively and graphically create a curve and then store it into a binary file which can be imported
into the application.

A sample program can be found in the Demos directory as "AVR Interpol". Here an optical distance/proximity
sensor (Sharp) is sampled by the ADC and then linearised. The result is displayed in cm. A datasheet can be
found in the DOCs directory.

5.4.1 Program start
The program CurveGen.exe has to be started from the IDE PED32 with the button
or with the menu item curve Editor on the left. After setting all the needed
parameters and setpoints a binary file can be created which is necessary for the
interpolation and lookup in the application.

CurveGen is absolutely interactive and graphic based. Because of this there is
always an immediately reaction and view when parameters are changed. The
curves between the supplied setpoints are calculated with a special spline-like
algorithm. So it’s also possible to generate a stairway curve which is impossible

with a pure spline.

The above picture shows a screenshot of CurveGen with the project AVR Interpol loaded.
The two vertical red lines define the start and end point for the table generation.

 AVRco Tools

5.4 – LookUp Table E-LAB Computers

The red squares show the predefined set points.

The upper half of the picture at left shows the properties which can be choosen for mouse
clicks and mouse moves.
None means that the mouse clicks and moves have no affect to the display.
Drag point moves a clicked red set point as long as the mouse key is pressed.

Rotate point allows a click to a point and then manipulate the point’s direction (vector)
and weight by dragging the white attribute circle.
With edit point a click to a set point opens a dialog where the exact position (x/y) of a set
point can be edited.
Measure allows to move with the left or right mouse button two cross hair cursors which
are used as measuring points. The result is shown at the bottom of the display.
With Insert point additional set points can be inserted with mouse clicks between two
existing set points.
Append point appends with each mouse click a set point to the last right point.
With delete point an existing set point can be deleted.

Project admin opens a dialog described later on below.

Config display opens a dialog for defining the display’s parameters like scaling, partition
etc. See description below.

Config output opens a dialog for editing the output/export parameters like data type
(integer, longint etc). Description see below.

With Save Project all project data and setup is saved in the project file ProjectName.inicg

With Save Proj as the current project and it’s parameters is saved in a new project file.

Store Curve opens the store dialog (see below). A text field shows the generated output
in a readable form. So a preview of the generated lookup table is possible.

Exit closes the program and exits.

The project admin dialog offers
besides the loading of existing
projects also project deletion
and creation of new projects.

With a double click onto a table
entry this project is loaded.

With a click to the New project
button a dialog appers for
editing the new project’s name
and it’s working directory.

This new project now has some
default settings and a small
count of set points. All
parameters and setup values
now must be changed to fit to
the sensor’s behaviour.

 AVRco Tools

E-LAB Computers LookUp Table - 5.5

The display setup dialog is used to set scalings and
partition for the display.

The setting must be done separate for the x and y
axis. The scalings can be linear or logarithmic.

The scala partition must be selected so that the text
of the scale shows no rounding errors.

The minimal values of the scale are related to the
bottom left corner and the maximal values to the
upper right corner of the display.

The Export dialog on the left serves to edit
definitions how the binary file must be build.
The data type is defined with Exported type

With Ranges a part of the display’s curve is
choosen. This range is displayed by vertical red
lines. Start and End Value is only related to the x-
axis. Only these points of the curve are exported
which reside between these two limiters.

The value point count defines value pairs within the
selected range should be exported into the binary
destination file.

The x and y values can be scaled and offsetted for
the export. The calculation will be done with the
formula:
val:= (val – offset) * factor

The Output dialog shows all relevant
settings, parameters and lists the
generated lookup value pairs These list
can be printed out.

With the Store button the binary file
ProjectName.crvg can be written. This file
then must be imported into the application
source like described above.

 AVRco Tools

5.6 – LookUp Table E-LAB Computers

5.5 Properties of CurveGen
Precision:
This program is based on a special spline function. Spline has the property that the generated curve always
touches the set points. This results in the consequence that each error in the coordinates of the setpoint
atleast at this point becomes effective and also somewhat weaker in it’s nearness. Because of this the
precision of the interpolated values depend heavily on the precision of the set points.

Less important for the precision is the count of the set points. With „normal“ quadratic, cubic or logarithmic
curves a few points in the range of 5..20 are sufficient. The more komplex a curve is the more set points are
necessary. An extreme one could be a logarithmic curve with linear parts and stairways.

Curve shape:
By the count and position of the set points the shape of a curve normally is well defined. But a new curve in a
new project still has a strong concentration of the point’s attributes and directions to the point itsself. This
easily can be seen because the parts between the points are absolutely linear.

These behaviour is not what we expect normally. A curve should have a curve shape . Because of this the
attributes of the set points must be adjusted in to proper values. This must be done with the mouse and the
selection rotate point. With a pressed left mouse button the point must be dragged.

But the point itself isn’t move but the visible attributes which are shown by a white curcle. With dragging of
such a circle the weight and direction (vector) of the point is changed. The longer the distance between the
point and it’s white circle is the more the curve is pulled ib this direction. This setup also must be done
carefully in order to get a curve which is as similar as possible to the origin curve. But don’t fear, the human
eye is very well suited to adjust this.

Ambiguousity: Curves must be unambiguous from the point of view of the used LookUp
parameter. In the leftside picture there are two x-values for one y-entry value. Which of these
values will be returned is uncertain. The similar is true for the x-entry into such a curve. Later
implementations of the AVRco LookUp functions support the area limitation for a LookUp so

this problem can be handled then.

Generating:
If the curve is completely defined the binary file can be generated. But before this the scaling factors, offsets
and the count of the needed curve points must be defined. (Export dialog)

The section of the curve can be nearly arbitrary. But it makes no sense to set the limits beyond the x-start
and end values. In this case only points within the existing x-values of the curve will be exported. If the
section is too small propably the interpolation results in inaccurate values.

The offset and scaling factors must be defined in a way that later on the program generates usable values. If
for example the input value is read from a 10bit AD-converter, the result from ((curve-y-val – offset) * factor)
should be within 0..1023. Similar is true for the x-value. The values of offset and factor strongly depend of
the total gain of the system. This means the gain from sensor to OP-amps upto the AD-converter and its
resolution.

The count of points to generate is defined by the dialog field point count. Here a compromise is necessary.
As an ideal a huge count of points eliminates (or nearly does so) the interpolation and therefore reduces the
errors found in the linear interpolation. But this results in huge table with an according long search time. How
much points are needed can be found out only with tests with the hardware. An upper limit is the resolution
of the data gathering system, eg. AD-converter. With 10bits there are only upto 1024 possibly entry values.

Basically there is one question when the precision has to be checked: which part of the system is the most
unprecise one. In most cases the sensor is that one. If this device has large tolerances it makes no sense to
trim the software precision to 0.1%.

 AVRco Tools

E-LAB Computers SCCS - 6.1

6 Source-Code-Control-System – SCCS

A problem which is always present with software development is the maintenance of the sources, or better
said, the rewinding of the current project state back to the state of date mm.dd. This can become necessary
if there is the need to make some changes to an old version of the project which is thought to be history, no
more used etc. Also sometimes it is important to switch back to a certain previous version if the current
version has accidently moved to a direction, which is obviously wrong (ill, faulty, wrong strategy).

To solve these problems there are some so called Version Control Systems available which are absolutely
not cheap. These systems are very complex and working with powerful data bases etc, which results in high
costs. But reducing the problem to the essentials, don’t use data bases and complexe operations, this job
can also be done with simpler tools by accepting some limitations.

6.1 Overview E-LAB Source-Code-Control-System
The solution integrated into the IDE PED32 from E-LAB is not comparable to the available professional
(costly) tools but it does it’s job and is very useful for maintaining the projects build and controlled with the
PED32.

The properties of the E-LAB SCCS are:

 The currently loaded version of a project incl. all selected Unit and Include files, the project’s
setup etc. can be stored (freezed) with a button click.

 All store operations target a specific directory including datums and time informations.
 The files are not compressed nor keyed so they can be read at any time with a text viewer.
 Each stored version can be viewed in a list and can be restored either into it’s origion directory or

any other directory. The project then is useable without any further interventions.
 All operations are done within the IDE PED32. No external programs are necessary or executed.
 Backups are created on demand. There is no automatic protocolling of file changes.

6.2 Strategy of the E-LAB SCCS
All backups (versions) are stored in the subdirectory _SCCS_ below the project’s directory. Here each
version has it’s own directory which name consists of sccs_ +Date +Time. Example:

 sccs_020628_1729

The part 020628 is the date 2002.06.28 and 1729 the time 17:29. Theoretically it is possible to do a store
operation every minute. This directory contains all files which were selected for a version backup of the
project.

Files which must be copied for a version backup must be selected in a dialog. An automatic include of all
existing files of the project is not possible. It is not necessary that that a selected file is located in the
project’s directory, there are no restrictions. But in this case the system has a different strategy in case of a
version restore.

If a restore operation is executed and the user decides that the target directory must be the origin directory of
the project, all stored files are copied to their origin locations and already existing files with the same name
are overwritten.

If the target directory should be different from original directory all stored files are copied into this directory,
regardless of the origin location.

With both cases some ntries in in the project’s control file ‘dddd.ppro’ will be changed, if necessary

 AVRco Tools

6.2 – SCCS E-LAB Computers

How to...

All operations of the SourceCodeControlSystem (SCCS) are related to actual loaded project.

6.2.1 Version store
If the actual state of a project must be stored as a version the concerned files must be selected at least one

time. This must be done with the button which opens the dialog below.

With add Unit file or add Include file a
file is added to the project. This file can
be reside anywhere, but Unit files must
have the extension .pas and Includes
the extension .inc

With remove file the highlighted file is
removed from the list.

Now the project administration knows
which files belong to this project.
Sometimes it makes no sense that all
these files are included also into a
version backup, so the files which
should also included for version
backups must be separately selected
with their checkboxes.

Now all setups for the version backup of this project are complete. In most cases there is no need to change
this setup in the future.

If the current state of the project should be stored as a version the menu item
Source Code Control System opens the SCCS dialog below.

 AVRco Tools

E-LAB Computers SCCS - 6.3

This dialog shows all known
previously stored versionsof the
actual loaded projekt. A click onto
an entry in the left list field shows
it’s contained files in the right field.
Each backup contains an Info
which can be viewed with the
view info button. Each included
file can be viewed with view file
button. With the button save
version the actual state (version)
of the project is stored into a new
sub-directory including date, time
and all selected files. Then an
editor window pops up where
additional informations and user
comments can be written which
are stored into the info file.

The new additional version is then
listed in the version list on the left.

6.2.2 Restore a previous version

In order to restore a previous state (version) of a project the button restore version in the dialog above must
be clicked. The dialog below pops up:

It initially shows the origin directory of the
project.

Basically there are two ways to proceed with
the restoration.

1. Restore into the origin directory
2. Restore into a different existing or

new directory.

 AVRco Tools

6.4 – SCCS E-LAB Computers

6.2.2.1 Original Directory

This is the simplesty way. Click the Ok button of the
directory dialog.

The information dialog on the left appears.
The Yes button starts the operation, the Cancel button
aborts all.

6.2.2.2 New or different Directory

In the topmost edit field of the above directory dialog the
desired path and directory of the target must be edited.
The quit with the Ok button. If the selected directory
doesn’t exist, the dialog on the left appears. Click the Yes
button to accept the directory creation.

In both cases the restore and copy operation must be
accepted with dialog on the left.

Because a completely new project is created now using the stored
version of the actual project, this new project must have an unique
name. The system suggest a new name in the left dialog. This
name can be changed by the user.

And then also this operation is finished.

 AVRco Tools

E-LAB Computers Flash DownLoader/Writer - 7.1

7 Flash Down Loader / Writer

The installation of AVRco contains a PC-based DownLoader Program FlashLoader.exe. This is integrated
into the IDE PED32.
 A click to the button starts the tool.

This tool assumes that the Target Monitor communicates through a serial interface. With the help of this tool
a new application can be downloaded and programmed into the target system if the Loader Monitor is
installed there. It’s clear that the Loader in the target must be activated at this time. In the example program
..E-Lab\AVRco\Demos\SelfProg\... this is accomplished by pressing two special buttons of the keyboard.

The PC-tool can also be used independent of the IDE or Editor. Then there are two possible (optional)
commandline parameters:

1. FileName with path (optional). Filename can be a Hexfile (.hex or .eep), a proj-File (.ppro), a Pack file
 (.pack) or Encr File (.encr).

2. FlashLoader ID (optional). The parameter starts with a % and consists of the decimal ID 0..65536. If this
parameter is present the program raises a warning if the preset value differs from the value (ID) in the
target system.

If a Flash download is started the tool at first erases the last page below the BootLoader. If there is any ID so
it becomes invalid and gets valid again only if a download was successful. The validity can be checked in the
Bootloader if the reset of the CPU immediately jumps into the Boot. See the Example below.

The program uses the following communication protocol:

FlashLoader Commando List

? Host requests Loader ID.
 Loader responds with
 FD FlashDownLoader

A Host sends page adr in word representation. All Flash action rely to this Page
aa1 page addr loByte
aa2 page addr hiByte
aa3 if the target CPU has more than 128kBytes Flash this page extend byte must be send
 Loader responds with
 CR Command executed

B Host sends EEprom adr in byte representation and EEprom data (byte).
aa1 EEprom adr loByte
aa2 EEprom adr hiByte
data 1 Byte into EEprom
 Loader programs this byte into the EEprom and responds with
 CR Command executed

C Host sends EEprom adr in byte representation.
aa1 EEprom adr loByte
aa2 EEprom adr hiByte
 If an (optional) password is given (see below) the Host must then send the correct password:
pw1 Password loByte
pw2 Password hiByte
 Loader reads the EEprom byte from this address in the EEprom and sends it back as the response

 AVRco Tools

7.2 – Flash DownLoader/Writer E-LAB Computers

D Host stores a new Page of Flash data into the Loader’s buffer
data following (ps x 2) bytes = Pagesize x 2 (mega8..meg16 = 128bytes)
 Loader stores this Page into it‘s array and builds an 8Bit checksum by adding all bytes.
 Loader sends the computed checksum as a result of the operation to the Host:
 cc Checksum

E Host requests erase of the actual Page
 Loader erases the actual Page in the Flash and responds with
 CR Command executed

I Host requests Loader Info.
 Loader responds with
 I Info ID = Loader-ID, see below
 id1 hiByte Processor ID
 id2 midByte Processor ID
 id3 loByte Processor ID
 ps words pro page
 bs1 Bootblock start addr lobyte \
 bs2 Bootblock start addr hibyte / = Bootblock start addr in word count
 bs3 Bootblock start addr extbyte / = Bootblock start addr in word count if Flash > 128KB

P Host request programming of the Loader’s buffer into the Flash

Loader overwrites the actual Page in the Flash with the content of it’s buffer. A verify is not
implemented. This can be done by the Host with reading the Flash page into the Loader’s buffer by
the R-Command and then upload the content of this buffer with the U-command.

 The Loader responds with:
 CR Command executed

R Host requests reading the actual FlashPage into the Loader’s Buffer.

 Loader copies the actual Page from Flash into it’s buffer.
 The Loader responds with:
 CR Command excuted

U Host requests an upload of the content of the Loaders buffer
 If an (optional) password is given (see below) the Host must then send the correct password:
pw1 Password loByte
pw2 Password hiByte
 The Loader sends (ps x 2) Bytes = Pagesize x 2 (mega8..meg16 = 128bytes).
 data
 and then an 8Bit checksum, build by the addition of all bytes sent.
 cc Checksum

W Host sends a relative page addr in word representation. Then a word follows which the Loader must
write into it’s buffer with the use of this address

aa page addr relative (Byte!!)
ww1 loByte
ww2 hiByte
 Loader responds with
 CR Command executed

X End of communication. The Loader Monitor jumps to the optional user supplied procedure
 FlashLoaderExit. If the system doesn’t find this procedure the loader does a JUMP to 0000h if it
 terminates.
 No response from the Loader.

 AVRco Tools

E-LAB Computers Flash DownLoader/Writer - 7.3

Loader identification
In most cases the Loader Program is programmed once into the target CPU and remains unchanged at least
for a long time. Because of this it’s a good idea to place the hardware revision (or similar) of the board or
system into it. This 16bit number can be interrogated before a download to make sure that the downloaded
firmware is executable on this hardware. This number is included into the machine code as an immediate
constant when the BootLoader is generated. This must be done by the definition of a global constant named
„DownLoaderID“:

const
 DownLoaderID : word = 010213;

If this constant is not defined this value is stored with $0000 in the Loader.
The ID-number can be recalled at runtime from the loader using the command ‚i’.

i The Host requests the DownLoader ID.
 Loader responds with
ww1 ID-loByte
ww2 ID-hiByte

There are upto 4 possible ID-words which then are sequential uploaded with the i-command:

const
 DownLoaderID : word = $1234;
 DownLoaderID1 : word = $5678;
 DownLoaderID2 : word = $9ABC;
 DownLoaderID3 : word = $DEF0;

Security
In order to disable unauthorized read back of the Flash or EEprom content through the Loader there must be
an optional password defined:

const
 DownLoaderPWD : word = $1A2B;

If a password is defined the upload tool must always provide this password if any upload command is used.

Furthermore it makes sense that a new firmware is not shipped in the hex format but either in the Pack or
better in the Encrypt format of the E-LAB programmer tool. The AVRco Downloader supports also these
formats.

 AVRco Tools

7.4 – Flash DownLoader/Writer E-LAB Computers

7.1.1 BootLoader Example
Program SelfProg;

{ $BootRst $01F00} {reset jumps to here}
{$NOSHADOW}
{ $W+ Warnings} {Warnings off}
{$DEBDELAY}

Device = mega163, VCC=5;

Import SysTick, FlashWrite, LCDport, MatrixPort;
From System Import ;

Define
 ProcClock = 8000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0020, iData;
 FrameSize = $0010, iData;
 LCDport = PortA;
 LCDtype = 66712;
 LCDrows = 4; {rows}
 LCDcolumns = 20; {columns per line}
 MatrixRow = PortB, 4; {use PortB, start with bit4}
 MatrixCol = PinB, 0; {use PinB, start with bit0}
 MatrixType = 3, 4; {3 Rows at PortB, 4 Columns at PinB}

Implementation

{$IDATA}
{--}
{ Type Declarations }
type
 KeyShift = (F5, F2, arrRight, clear, F4, F1, arrLeft, point, arrDown, arrUp, F3, shift);

{--}
{ Const Declarations }
const
 DownLoaderID : word = $1234;
// DownLoaderID1 : word = $5678;
// DownLoaderID2 : word = $9ABC;
// DownLoaderID3 : word = $DEF0;

 strC : string = 'Hallo';
 KeyLookUp : array[key1..key12] of char = ('3', '9', '6', 'E', '1', '7', '4', '0', '2', '8', '5', ' ');

 BootCheck[$3DF8] : word = $AA55; // last page below bootloader

 AVRco Tools

E-LAB Computers Flash DownLoader/Writer - 7.5

{--}
{ Var Declarations }
{$IDATA}
var
 bb, x, y : byte;
 bool : boolean;
 ch : char;
 ww : word;
 KeyLookUpV : array[key1..key12] of char;

{--}
{ functions }
{$PHASE BootBlock $01F00}
Procedure BootTest;
begin
 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 // the following code makes only sense if the Reset jumps to here
 // if the Flash constant “BootCheck” is defined we can check here for a valid last download
 ; check in Flash
 ASM;
 LDI _ACCCLO, SelfProg.BOOTCHECKF AND 0FFh
 LDI _ACCCHI, SelfProg.BOOTCHECKF SHRB 8
 LPM _ACCA, Z+
 CPI _ACCA, 055h
 BRNE BootTestX
 LPM _ACCA, Z+
 CPI _ACCA, 0AAh
 BRNE BootTestX
 ; // normal program start
 JMP 0000h;
 BootTestX:

 ; // check failed, try to download
 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 FlashDownLoader;
ENDASM;
end;

Procedure FlashLoaderInit;
begin
 ASM;
 ; >> SERPORT Init <<
 ; >> Baudrate 19200Baud <<
 LDI _ACCA, 018h ; Rx and Tx enable, polling
 OUT ucr1, _ACCA ;
 LDI _ACCA, 019h ; 19200 Baud
 OUT ubrr1, _ACCA ;
 SBI ucr1, 2 ; 2 stop bits
 SBI ucr1, 0 ; 2. stopbit = 0
 ENDASM;
end;

 AVRco Tools

7.6 – Flash DownLoader/Writer E-LAB Computers

Procedure FlashLoaderRecv;
begin
 ASM;
 SBIS usr1, 7 ; Receiver ready?
 RJMP AVR_SELFPROG.FLASHLOADERRECV ; if not
 IN _ACCA, udr1
 ENDASM;
end;

Procedure FlashLoaderTransm;
begin
 ASM;
 SBIS usr1, 5 ; Transmitter ready?
 RJMP AVR_SELFPROG.FLASHLOADERTRANSM ; if not
 OUT udr1, _ACCA
 ENDASM;
end;

Procedure FlashLoaderExit;
begin
 ASM: JMP SYSTEM.VectTab;
end;
{$DEPHASE BootBlock}
{--}
{ Main Program }
{$IDATA}

begin
 LCDcursor (true, false);
 write (LCDout, strC);
 mDelay (1000);
 LCDclr;
 LCDxy (2, 0);
 write (LCDout, 'E-LAB Computers');
 LCDxy (3, 1);
 write (LCDout, 'DownLoad Test');
 LCDxy (3, 2);
 write (LCDout, 'press any Key');
 LCDxy (0, 3);
 write (LCDout, 'Result :');
 LCDxy (9, 3);

 EnableInts;

 loop
 repeat until KeyStatRaised;
 LCDxy (9, 3);
 LCDclrEol;

 AVRco Tools

E-LAB Computers Flash DownLoader/Writer - 7.7

if ReadKey(Key12) then
 case KeyShift (GetKeyRaised) of
 F5 : write (LCDout, 'F5');
 |
 F2 : write (LCDout, 'F2');
 |
 arrRight : LCDout ('>');
 |
 clear : write (LCDout, 'BootTest');
 BootTest;
 |
 F4 : write (LCDout, 'F4');
 |
 F1 : write (LCDout, 'F1');
 |
 arrLeft : LCDout ('<');
 |
 point : LCDout ('.');
 |
 arrDown : LCDout ('v');
 |
 arrUp : LCDout ('^');
 |
 F3 : write (LCDout, 'F3');
 |
 shift : write (LCDout, 'Shift');
 |
 endcase;
 else
 LCDout (KeyLookUp[GetKeyRaised]);
 endif;
 endloop;
end SelfProg
.

1996-2009 E-LAB Computers
Grombacherstr. 27
D74906 Bad Rappenau

Tel. 07268/9124-0
Fax. 07268/9124-24

Internet: www.e-lab.de
e-mail: info@e-lab.de

	1 Overview
	1.1 AVRco Versions
	1.2 Manual Versions
	1.3 Structure of the Documentation

	2 Tutorial
	2.1 Introduction
	2.2 Quick Start – Build And Test An Application - A Step-By-Step Introduction
	2.2.1 Download, Install And Start The AVRco (Demo Version)
	2.2.2 Create Your First Projekt
	2.2.2.1 Create A Program Frame
	2.2.2.2 Enter The Program
	2.2.2.3 Compile And Assemble ("Make") The Program

	2.2.3 Check The Program Using The Simulator
	2.2.4 Enter Some Own Messages

	2.3 Build An Application Of Your Own – Take a Deeper Look
	2.3.1 Create A New Project And A Program Frame
	2.3.2 Enter And "Make" The Program
	2.3.3 Some Nice And Useful Feature Of The Editor
	2.3.4 The Simulator – The Only Way To Success
	2.3.5 Get More Useful Informations

	2.4 The Internal EEProm
	2.5 Additional Ressources: The AVRco Documentation
	2.5.1 How to Find all related Informations?

	2.6 What Hardware Do You Need?
	2.6.1 Some additinional hints concerning the hardware

	2.7 What Do You Need To Program Your Hardware?
	2.7.1 How To Use The E-LAB Programmer (serial programmer, SPI mode)
	2.7.2 How To Set The Programmer Options For a New Project

	2.8 At A Glance: Multitasking
	2.9 Useful Links
	2.10 Appendix
	2.10.1 The AVRco Versions
	2.10.2 Source File Tutor01.pas
	2.10.3 The Mega8 Konfiguration Bytes

	3 Editor PED32
	3.1 Overview
	3.1.1 Introduction

	3.2 Projects
	3.3 Controls
	3.4 Syntax
	3.5 Menu
	3.5.1 File Menu
	3.5.2 Edit Menu
	3.5.3 Search Menu
	3.5.4 Project Menu
	3.5.5 System Menu
	3.5.6 IDE Menu
	3.5.7 Window Menu
	3.5.8 Info Menu

	3.6 Dialogs
	3.6.1 Project Admin
	3.6.2 Project Options
	3.6.3 Project Info
	3.6.4 General Options
	3.6.5 Macro Editor
	3.6.6 Character Table
	3.6.7 System Admin
	3.6.8 File Open
	3.6.9 File Save As
	3.6.10 Print
	3.6.11 Find
	3.6.12 Replace
	3.6.13 Goto Line
	3.6.14 TabSize

	3.7 SpeedButtons
	3.7.1 FileOpen
	3.7.2 Save
	3.7.3 Project administration
	3.7.4 Application Wizard
	3.7.5 Printer Dialog
	3.7.6 Cut
	3.7.7 Copy
	3.7.8 Paste
	3.7.9 Find
	3.7.10 Replace
	3.7.11 Undo
	3.7.12 Tile horizontal
	3.7.13 Tile vertical
	3.7.14 Cascade
	3.7.15 Split Window
	3.7.16 Calculator
	3.7.17 Project Info
	3.7.18 Alphabet
	3.7.19 Make
	3.7.20 Compile
	3.7.21 Link
	3.7.22 Post Processor
	3.7.23 Debugger
	3.7.24 Simulator
	3.7.25 Assembler
	3.7.26 RomSim/Prommer
	3.7.27 Tool
	3.7.28 Librarian
	3.7.29 DisAssembler

	3.8 State Bar
	3.9 Error window
	3.10 HotKeys and ShortCuts = Keyboard commands
	3.10.1 IDE and Syntax Help
	3.10.2 File and window operations
	3.10.3 Move caret
	3.10.4 Edit
	3.10.5 Search/replace
	3.10.6 Caret block commands
	3.10.7 Edit block
	3.10.8 Diverse
	3.10.9 Keyboard Macros

	3.11 Projects
	3.11.1 Working with projects
	3.11.1.1 Load Project
	3.11.1.2 Edit/New Project
	3.11.1.3 Project Path
	3.11.1.4 MainFile
	3.11.1.5 Application Wizard
	3.11.1.6 Template
	3.11.1.7 Project Options
	3.11.1.8 System Options
	3.11.1.9 Project Information

	3.12 Controls
	3.12.1 What is a control?
	3.12.2 Control Edit
	3.12.3 Syntax select
	3.12.4 Error File define

	3.13 Syntax
	3.13.1 Syntax edit

	3.14 Editor Setup
	3.14.1 Fonts, Colors, Backup and Fasthelp
	3.14.2 Character table
	3.14.3 Keyboard Macros

	3.15 Menus
	3.15.1 File Menu
	3.15.1.1 History
	3.15.1.2 Insert File
	3.15.1.3 Save Block

	3.15.2 Edit Menu
	3.15.3 Search Menu
	3.15.4 Project Menu
	3.15.5 System Menu
	3.15.6 IDE Menu
	3.15.6.1 Tabs

	3.15.7 Window Menu
	3.15.8 Info Menu
	3.15.8.1 Help IDE
	3.15.8.2 Help Syntax
	3.15.8.3 Info IDE
	3.15.8.4 Info Syntax
	3.15.8.5 About... and compiler registration

	4 Simulator / Debugger
	4.1 Introduction
	4.2 Overview – the Desktop
	4.2.1 the Header
	4.2.2 the Menubar
	4.2.3 the Toolbar
	4.2.4 the Working Area
	4.2.5 the Statusbar

	4.3 the Handling of the Simulator
	4.3.1 Menu Projekt
	4.3.1.1 Open / Save / Save as / Print / Printer Setup / Close
	4.3.1.2 Reload / Reload EEprom

	4.3.2 Menu Breakpoints
	4.3.2.1 Show list
	4.3.2.2 Reset all Breakpoints
	4.3.2.3 Stop after ..
	4.3.2.4 Stop on Schedule, Stop on TASK kill
	4.3.2.5 Memory Write Breakpoints
	4.3.2.6 Test I/O

	4.3.3 Menu Watches
	4.3.3.1 Add Watch
	4.3.3.2 Delete all Watches
	4.3.3.3 Popup Raw Display
	4.3.3.4 default Watch representation

	4.3.4 Menu Run
	4.3.4.1 Reset processor Ctrl+F2
	4.3.4.2 Go F9
	4.3.4.3 Goto cursor pos F4
	4.3.4.4 Stop simulation F2
	4.3.4.5 Step into F7
	4.3.4.6 Step over F8
	4.3.4.7 Step out F6
	4.3.4.8 Multiple Steps Shift+F9
	4.3.4.9 Animate Ctrl+F9
	4.3.4.10 Multiple step value
	4.3.4.11 Animation speed
	4.3.4.12 Enable Trace ASM / Enable Trace HLL
	4.3.4.13 Clear Trace buffer
	4.3.4.14 Call Stack Ctrl+F3

	4.3.5 Menu Extern
	4.3.5.1 Interrupts

	4.3.6 Menu Search
	4.3.6.1 Show Code at..
	4.3.6.2 Show Data at..
	4.3.6.3 Search Code hex pattern..
	4.3.6.4 Search Data hex pattern..
	4.3.6.5 Search in Source F3

	4.3.7 Menu Configure
	4.3.7.1 Show Hints
	4.3.7.2 Save as default
	4.3.7.3 Config with default
	4.3.7.4 COMport [ICE..Monitor]

	4.3.8 Menu Properties
	4.3.8.1 Short mDelay
	4.3.8.2 Fast RTC
	4.3.8.3 Short Beep

	4.3.9 Menu Windows
	4.3.9.1 Toobar
	4.3.9.2 Arrange icons
	4.3.9.3 Source
	4.3.9.4 Work Registers
	4.3.9.5 Processes
	4.3.9.6 Disassembler
	4.3.9.7 Code memory
	4.3.9.8 Data memory
	4.3.9.9 Watches
	4.3.9.10 Ports
	4.3.9.11 Peripherals
	4.3.9.12 view Trace
	4.3.9.13 view Process states
	4.3.9.14 SysTick / Scheduler timings
	4.3.9.15 Terminal I/O
	4.3.9.16 ADC
	4.3.9.17 KeyBoard 4x4
	4.3.9.18 KeyBoard 8x8
	4.3.9.19 LCD display
	4.3.9.20 LCD_M display
	4.3.9.21 7seg display
	4.3.9.22 I2C 7seg display
	4.3.9.23 14seg display
	4.3.9.24 LCD Graphic
	4.3.9.25 File System
	4.3.9.26 FAT16
	4.3.9.27 Incr Counter
	4.3.9.28 Frequ Counter
	4.3.9.29 I2C PortExpand
	4.3.9.30 System Blinker
	4.3.9.31 SwitchPort
	4.3.9.32 RC5receiver
	4.3.9.33 Servos
	4.3.9.34 Heap
	4.3.9.35 Stepper

	4.3.10 Menu Help

	4.4 SysTick and Scheduler timings
	4.5 Determine Frame and Stack usage with the Simulator
	4.6 Frame and Stack check at runtime
	4.6.1 Extended stack and frame checks

	4.7 JTAG / OWD Debugging
	4.7.1 UpLoad / DownLoad
	4.7.2 Hardware Breakpoints
	4.7.3 Tips and Notes for JTAG Debugging

	4.8 Compiler Switches and the Consequences
	4.8.1 {$D+} {$D-}
	4.8.2 {$E+} {$E-}

	5 Lookup and Interpolate
	5.1 Nonlinear functions of sensors
	5.2 Linearising
	5.2.1 System Functions:

	5.3 LookUp Table definition and import
	5.4 Creating the LookUp Table with CurveGen
	5.4.1 Program start

	5.5 Properties of CurveGen

	6 Source-Code-Control-System – SCCS
	6.1 Overview E-LAB Source-Code-Control-System
	6.2 Strategy of the E-LAB SCCS
	6.2.1 Version store
	6.2.2 Restore a previous version
	6.2.2.1 Original Directory
	6.2.2.2 New or different Directory

	7 Flash Down Loader / Writer
	7.1.1 BootLoader Example

