BETA Release

Tutorial - Editor - Tools Manual

E-LAB AVRCO

Pascal Multi-Tasking for Single Chips

Version for

AVR

© Copyright 1996-2009 by E-LAB Computers

Blaise Pascal Mathematician 1623-1662

3-Jul-2009




The contents of this user guide is copyright protected by E-LAB Computers.

Autor Rolf Hofmann
Editor Gunter Baab

E-LAB Computers

Grombacherstr. 27

Mikroprozessor-Technik D74906 Bad Rappenau

Industrie-Elektronik Tel 07268/9124-0

— Hard e & Fax 07268/9124-24
-Bit « 16-Bit » 32-Bit http://www.e-lab.de

info@e-lab.de

Computers

Important information

Everybody tries to write Software without bugs. The emphasis is on tries, because everybody knows that
the more complex a Software is, the more likely it is to produce bugs.

We have the opinion, that this shouldn’t have to be norm, and that we do not have to live with the problems
and mistakes (although some Software giants think like that © ).

If you should find any errors, we would be thankful for any information. We will try to solve any
problems as quickly as possible.

It is also a normal international agreement that the software producer does not accept liability for any costs
arising out of errors in software, unless otherwise agreed.

E-LAB Computers do not accept liability for costs resulting out of errors in the software. It is a condition of
use of this Software you agree with these terms. If you do not agree, you are not permitted to use the
software.

As we have said, before this exclusion of liability is international standard.

This user guide and the software is intellectual property from E-LAB Computers and therefore copyright
protected.

This document and the software it relates to are solely for the use of the purchaser. The purchaser is not
permitted to give give, sell or distribute these products. Distributing copies of these products to a third party
is strictly prohibited.

We like to think that you as user of the software can make money from it and therefore also expect
maintenance of the product. lllegal copies would make it impossible for us to be able to maintain this
service.

As you see it is also in the interest of you, the user, to observe the copyright.

That's it the author



AVRco Tools

e-la

Table of Contents
1 OVEIVIBW oetiiiiiiiiie ettt ettt e e e e e e e et e e et e e e e e e e e e e e eeeaennnn s 1.1
1.1 AVRCO VBISIONS it e ittt ittt ettt oottt ettt e e oo 4o bbbt e e e e e e e s o aab b bbbttt e e e e e e e st bbb e e e e e e e e e aanbbbbneeeaeas 11
1.2 MANUAL VEISIONS ..ttt ettt e e e e ettt e e e e e s ok b bbbt et e e e e s e e ab bbb e e e e e e e e s aanbbbbneeeaaas 11
1.3 Structure of the DOCUMENTALION ......uiiiiiiiii ittt e e e e e aaebb e eeaeas 11
2 TULOTTAL e e e 2.1
P28 R 14 {o Lo [F T X 1o o T PP TP PP PP PPPPTRTPO 2.1
2.2 Quick Start — Build And Test An Application - A Step-By-Step Introduction........................... 2.2
2.2.1  Download, Install And Start The AVRCO (DemMO VEISION) ........cccvvviiiiiiiiiiiiiiiiiiiiiiiiiiiieienieeeeees 2.2
2.2.2  Create YOUr FIrSt PrOJEKL......cciiiiiiiiiiiiiiiiiiiieeeee ettt ea s 2.4
2.2.2.1 Create A Program Frame...... ..ottt e et e et a e et e e e et e e eeaaaeaees 25
2.2.2.2  ENEEI THE PrOGraM ..o 2.8
2.2.2.3 Compile And Assemble ("Make™) The Program .........ccccoiiiiii 29
2.2.3  Check The Program Using The SIMUIALOT.............ccuvviiiiiiiiiiiiiiieeeeeeeeeeeeee e 2.10
224 ENter SOmME OWN MESSAGES ... . ittt ettt e e et e e e et e e e et e e e eban e aees 212
2.3 Build An Application Of Your Own — Take a Deeper LOOK. ..., 2.13
2.3.1  Create A New Project And A Program Frame...........cccuuuuiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeaeee e 2.13
2.3.2  Enter And "Make" The Program ...........cuuuuiiiiiiiiiiiiiiiiieeeeeeeeee ettt 2.17
2.3.3  Some Nice And Useful Feature Of The EdItOr.............euiiiiiiiiiiiiiiiiee e 2.19
2.3.4  The Simulator — The Only Way TO SUCCESS ........ccvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 2.20
2.3.5  Get More Useful INfOrMAatiONS. .........coiiiiiiiiiiiiie e 2.23
2.4 The INternal EEPTOM ...ttt e e e st e e e e e e s s bbb b b e e e e e e s s e annebnees 2.25
2.5 Additional Ressources: The AVRCO DOCUMENTALION .......uvviiiiiiieiiiiiiiiieeee e 2.26
2,51 Howto Find all related INfOrMatioNS?..........ccuiieiiiiiiiiiiiii e 2.26
2.6 What Hardware DO YOU NEEA?..........uiiiiiiiieiiiiiiii ettt e e e e 2.27
2.6.1  Some additinional hints concerning the hardware..............ccccccvvviiiiiiiiiiiii 2.28
2.7 What Do You Need To Program YOur HardWar€? .......ccoooiiiiiiiii e 2.29
2.7.1  How To Use The E-LAB Programmer (serial programmer, SPI mode) ............ccccccvvvvvvvvennnnn 2.30
2.7.2  How To Set The Programmer Options FOr a NeW Project...........ccccccvvvviiiiiiiiiiiiiiiiiiiiiiinineen 2.32
2.8 At A GIancCe: MUIITASKING .ooooiii i 2.35
2.9 USEIUL LINKS .ttt ettt e e e s s s bbb et e e e e e s e ab bbb e e e e e e e e e e e nnnne s 2.37
P2 O N o7 o 1= o Vo [ TR 2.38
2.10.1  ThE AVRCO VEISIONS.....ciiiiiiiititieie e e e e ettt e e e ettt e e e e e s s e bbbt e e e e e e s s aaab bbb et e e e e e e s sannrbreeeeaens 2.38
2.10.2  SOUICE File TULOIOL.PAS . .ciiiiiiiiiiiiiiiiiiiieie ettt ettt ettt e e e e e e e e e e e e e e en e e 2.38
2.10.3 The Mega8 Konfiguration BYLES ...........cuiiiiiiiiiiiiiiiiiiiiiieeiteeeeeeeee ettt 241
3 EdItOr PEDS2......ei e 3.1
il OVEBIVIBW ettt ettt ettt et e o4 4o e a kb bttt e e e e 44 ook b h b bttt e e e e e e e e R bR R et et e e e e e e e REEbbr e e e e e e e e e anrenees 3.1
0 0S¢ R [ 011 (oo [F T (o] o D TP PP PP PP TP TTTOPPPPP 3.1
B2 PO B S ottt 3.2
S B 70 ] 11 { (o] = T T T PP TP PP PPPPPPP PPN 3.2

E-LAB Computers Table of Contents - |



AVRco Tools

&-la
I Y 11 £V G PO UT PP T TPPTRTRPPIN 3.2
IR T |V 1= o [ U TP PPPPRTRRPPIN 3.3
TR T8 R 1 1= 1Y =T o T PP 3.3
T o 11 1Y =T o TV [T PP PPTT T TTOPPPPP 3.3
3.5.3  SEAICH MENU ..ottt 3.3
R I S o] 1= Tox 1V =T o T PP 3.3
3.55 SYSEEIM IMBNU. ...ttt e ettt ettt e et e et e e e e tb e e e e et e e e e eba e e eerba e aaeennns 3.3
358 IDE MIBINU. .ttt ettt e e e bbb e et e e e e e e bbb a e et e e e e e s e bbb aaeeaaeas 3.4
TR A VAV o [0 1V A V1= o U PP 3.4
3.5.8 a1 To TN 1Y 1= o 1 TSP 3.4
G G I B 1T 1 Lo o 1= TR 3.4
G G 704 R . o] Tox X 4311 o PP 3.4
3.6.2  PrOJECT OPLIONS .coviiiiiiiiiiiieieeeeeeeee ettt 3.4
3.6.3  PrOJECEINTO covviiiiiiiiiiieeeeeeeeeeee e 3.4
G R 1= o 1= = T I @ o] (o] I PP 3.4
G G TS T Y/ = Tod (o N T 11 (o PP 3.5
3.6.6  CharacCter TADIE ......ccvviiiiiiiiiiiiiieeeeee 3.5
3.6.7  SYSEM AAMIN...ciiiiiiiiiiiiiiiieeeeeee ettt 3.5
B.6.8  FHlE OPEN ..ottt 3.5
B.6.9 B SAVE AS...cceiiiiieiieeeeeeeeeeee e 3.5
I 70 O B 1 o | SO T PP PTT T TORPPPP 35
I 70 R T o [T TP PTT T TOPPPPP 35
B.B.12  REPIACE .ottt 3.5
G G T80 I T €T (o TN N T PP 3.5
BiB.14  TADSIZE ..ot e e et e e e s a e s 35
3.7 SPEEABULION S it ———— 3.6
I A R 1 =T o 1T o PP 3.6
K O T |V TP PTP T TOPPPPP 3.6
3.7.3  Project adminiStratiOoN...........couviiiiiiiiiiiiiiiiieieee e 3.6
G A S Y o] o] o= o) g I YAY 4 1 { o PP 3.6
G A8 S T 11011 gl DI [ o PP 3.6
K L T O ¥ | ST PP PTP PP TTOPPPPP 3.6
K O A ©7o] o) T T PP PO PTP T TOPPTPP 3.6
3.7.8 P S ... e aa e e e et aaenaas 3.6
I AL T o To IR TP PTP T TTOPPPPP 3.6
BT7.L0  REPIACE oottt 3.6
I 00 R U o o [ BT PP PT PP TTPPTPP 3.6
3.7.12  THE NOMZONTAL ...cevviiiiiiiiiiiieeeeeeeee et 3.7
A e T 1 LoV oo | PP 3.7
I A S - =T o7 T [ PP 3.7
3715  SPIEWWINTOW ...ttt ettt et e e e s s ot bbbt et e e e e s s s s bbb e e et e e e e s s aanbbbbeeeeaens 3.7
I 0 ST - 1[0 -1 (o PP 3.7
B.7.07  PrOJECEINTO coviiiiiiiiiiiiiee e 3.7
3718 AIPNADEL ..o 3.7
I 0 R V- 1= T T PP PTP TP TTPPTPP 3.7
I 2 B ©7o 1 Yo 1 (= TP 3.7
I O R 1o | T PP PTT PR TTOPPPPP 3.7
.7.22  POSE PIOCESSON . ... .ciiitii ettt ettt e e ettt e e et et e et et e et eeb e e et e ba e e aeeb e e eenr e e e eraaaaae 3.8
I 2 T B 1= o 10 o o = PP 3.8
I A S 111 T -1 (o PP 3.8
725 ASSEMBIEN....cciiiiiiiieiiiieeee 3.8
3.7.26  ROMSIM/PIOMIMET ..iiiiiiiiiiiiiiiiitie ettt ettt ettt ettt et et ettt e e ettt et e et e et e e e e e e e e e e e e ae s 3.8
BLT.27 OO0 .ttt e e e e e et e e e e s e bbb et e e e e e e e e nbb b eeaae s 3.8
B.7.28  LIBFAITAN. ...ciiiiiiiiiiiiieeeeeeeeeeeee e 3.8
3.7.29  DISASSEMDIE.....ciiiiiiiiiiiiiiieeeeeee e 3.8
IR B = (<N = X | TSP PPPPTTRPPPPN 3.8
3.0 BT O  WINUOW i 3.9
3.10 HotKeys and ShortCuts = Keyboard commands ..., 3.9

Il — Table of Contents E-LAB Computers



AVRco Tools

e-la
3.10.1  IDE @nd SYNAX HEIP....oeviiiiiiiiiiiiiiiiiieeeeeeee ettt 3.9
3.10.2  File and WINAOW OPEIAtIONS .........ccviiiiiiiiiiiiiiiiiiiie ettt ettt ettt et e et et e et e e et e e e e e e e eeeaeees 3.9
3.10.3 MOV CAIBL...euuiiieeiiiciiiie et e et e e e et e 3.9
0 010 o | PR TR 3.9
3.10.5  SEArCHITEPIACE. .....coiviiiiiiiieeieeeeeeee e 3.10
3.10.6 Caret bloCK COMMEANTS...........uuiiiiiiiei ittt e e e e e e beeeeaens 3.10
0 0 A o 1 o] o T G SRR 3.10
B.L0.8  DIVEISE ..eteeiiiieei ittt ettt ettt e e ookttt e e e oo E bbbt et e e e e oo e a bbb ettt e e e e e e e a b bbb et et e e e e s e anbrbraeaaaas 3.10
3.10.9  KeYDOAIA MACIOS.......ciiiiiiiiiiiiiiiiiiieeeee ettt 3.10
B L PO S ittt ————— 3.11
3.11.1  WOrking WIith PrOJECTS ...cvvviiiiiiiiiiiiiiee et 3.11
0 5 0 I A o = Vo I = 0= 3.12
3.11.0.2 EQI/NEW PrOJECE ..o 3.13
3.11.0.3 ProjeCt Path. ... 3.14
0 I 0 I R Y PSPPI 3.14
3.11.1.5 APPICALION WIZAId.....cooo i 3.15
0 O L T =T 4 4 o] - L1 ST 3.15
I O A = (o= Tod A @ 1o R 3.15
3.11.0.8 SYSIEM OPtONS .ot ————— 3.16
3.11.1.9 Project INfOrMEtioN ......ccooiiiiiiii 3.16
I A 0] 11 { (o] £ T T PP PPPPPPTPPTTO 3.17
3121 WRALIS @ CONIOI? ...ttt e st e e e e e e s s et bbb e e e e e e e s annbbreeeeaeas 3.17
T A ©7o o1 (o] I o || ST TP PP TR TTRTPPP 3.18
B.12.3  SYNAX SEIECT c.ceviiiiiiiiiieieeeeeeeeeeeeee e 3.20
3.12.4  EITOr Fle dEfINE ... 3.20
TN 1Y 11 2= O QUSROS 3.21
001 200 RV o = Y QT [ SRR 3.21
I A T 1) (o Y ST =) U] o T 3.23
3.14.1 Fonts, Colors, Backup and Fasthelp.............couvviiiiiiiiiiii 3.23
3.14.2  CharaCter TADIE .......eeeiiiiie e e 3.24
3.14.3  KeYDOAIA MACIOS......cciiiiiiiiiiiiiiiiiieeee ettt 3.25
T T 1Y =T U= TP UPPTTT 3.26
N30 R 1 L= /1= o T PO SR T UUPRT 3.26
30t R o 111 o Y PR PRTP 3.26
BLL5.1.2 INSEIE FIlE ...ttt ettt et e e e e r e e e e e s r e e e e e e naaa 3.26
B.15.1.3 SAVE BIOCK ....veiiiiieeii ittt a e e e e a e e e e e 3.26
N T o 11 1Y [T T O PR 3.27
3.15.3  SEAICH IMENU ...t e et e e e e e et a e s 3.27
T LT A o o[ Tox 1V =T o T PP 3.27
3155 SYSIEIM MEBNU...ceuiiiii et e et e e et e e e et e et e et e e e e rr e e e e e e s 3.27
S ST 1 Y =Y o 1 PSP TU PR 3.28
I ST T R I oS PSPPI 3.28
3.15.7  WINAOW MENU ...ttt ettt e e e e s s et e e e e e s s e st bbb e e e e e e e e s anbbbbeeeaeeas 3.28
B.15.8  INFO MEBNU. ..ottt ettt e e s r et e e e e e et e e e e b e e aaeas 3.28
BLA5.8.1 HEIP IDE... . eiiiiiiiiiie ettt etttk h bt e sttt e ekt e e et e e b bt e e s nrb e e e nnrbee s 3.29
B.15.8.2 HeIP SYNtaX i 3.29
I TR T 1) (o TN PSPPI 3.29
15,814 INTO SYNMEAX 1o 3.29
3.15.8.5 About... and compiler registration..........coooiiiiii 3.29
4 Simulator / DEDUQQEr ... 4.1
T 1o {0 Yo [V T o1 4 [ Y o [T 4.1
4.2 OVerview —the DESKIOP ..ocvviiiiiiii 4.1
42,1 tNE HEAUEK ....ciiieeii ittt e e e e e e e e e r e e e e e s s a e s 4.2
4.2.2  the MENUDAT. ...ttt e e e e e st e e e e s as 4.2
4.2.3 T8 TOOIDA ...eiiieei ittt ettt e e et e e e e e e b r et e e e e bbb aaeas 4.2
S | Lo YV T4 (T o A 1= NS 4.3

E-LAB Computers Table of Contents - 11|



AVRco Tools

&-la

42,5 The SEAIUSDA ....coi ittt e e et e e e e e e bbb e e e e e e e s 4.5
4.3 the Handling of the SIMUIator ... 4.5
0 A 1V =Y 11 1= PN 4.5
4.3.1.1 Open/Save/ Save as/ Print/ Printer Setup / ClOSE.........ccccvviiiiiiiiiiiii 4.5
4.3.1.2 Reload / Reload EEPromM ........cooviiiiiiiiii 4.5
e Y = o 1U == 124 o] 1 S 4.6
A.3.2. 1 SROW lISE. ittt e e e et a e e e e b bbb e e aaas 4.6
4.3.2.2 Reset all Bre@KPOINtS.......cciiiiiiiiiiiiiie 4.7
O T T (o] o - =] TSP PPPTTPR 4.7
4.3.2.4 Stop on Schedule, Stop on TASKKIll .......ccooviiiiiiiiiii 4.7
4.3.2.5 Memory WIite BreakpPOiNtS.........ccuiiiiiiiiiiiiiiiie e 4.8
A.3.2.6  TESE IO i e e a e e eaaaas 4.10
4.3.3  MENUWAALCNES ...ttt e e e ettt e e e e e s s e ab b b e e e e e e e e s s annneees 4.10
4.3.3.1  AAA WALCR. ...ttt e e e e et e e e e s aaaaas 4.10
4.3.3.2 Delete @ll WALChES. ...t 4.11
4.3.3.3  PopUP RAW DISPIAY ...ceeviiiiiiiiiiiiiii e 411
4.3.3.4 default Watch repreSentation ... 411
434 MENU RUN ...ttt e e e e s ekt bbbt e e e e e e s et bbb e e e e e e e e e s annneees 4.11
4.3.4.1 Reset ProcessOr CHrHF2 .. ... 411
A.3.4.2 GO FO i e e e a e e s bbb e e e e s 4.11
4.3.4.3 GO0 CUISOI POS FA ...ttt e et e e et e e e et e e e et e e aeebea e aaees 4.12
4.3.4.4  StOp SIMUIALON F2.. .ot 412
A.3.45 SEEPINIO F7 i 412
4.3.4.6  SEEP OVl BB e ettt et a e e e e aaa 4.12
A.3.4.7  STEP OUL FB..unieiiiiiiiiieei ittt e et e e e e e e e st b e e e e e e e s s nb bbb e e e e e s 4.12
4.3.4.8 Multiple StEPS ShiftFFO ... .uuiiiiiii it 4.12
4.3.4.9 ANIMALE CUIHFD ..o e e e e bbb r e e e e e e e ab b ae e e e e s 4.12
4.3.4.10 MUIIPIE SEEP VAIUE......ccoiiiiiiiiiieiee e 412
4.3.4.11 ANIMALION SPEEU.......ciiiiiiiiiiii 412
4.3.4.12 Enable Trace ASM /Enable TraCe HLL..........ooiiuiiiiiiiiiiiii e 4.13
4.3.4.13 Clear TraCe DUITEI......coi i eb e s 4.13
4.3.4.14 Call StACK CHIHFS. .t e e e e s eeaaeas 4.13
4.3.5 MENU EXTEIN ... e 4.13
G R ST R [ 01 (=T (U] o PP PP TP PPPPTTRRPPPN 4.13
A.3.6  MENU SEAICK ..ceiiiii ittt e e e et e e e e e s e e e e e e ananeees 4.14
4.3.6.1  SNOW COUE AL.....eeiiiiiiiiiiiitiiii ettt e e e e e e e e e e s s s abb b e e e e e e s e anbbbreeeaeens 4.14
4.3.6.2  SNOW DALA @L.....uveiiiiiiiiiiiiiiiii ettt ettt e e e e e e e e e s e e e e e e e e e e s 4.14
4.3.6.3  Search Code heX PALeIN.. ......cciiiiiiiiii 4.14
4.3.6.4 Search Data hex PALterN..........cooviiiiiiii 4.14
4.3.6.5 S€ArCh iN SOUICE F3 ...ttt e e et e e e e e s s nnbbbeee e e s 4.14
e A =Y o 1W [ @] o 1 4.14
A.3.7.1  SROW HINES ..ttt e et e e e e e s s s aabb b e e e e e e s e anbrbr e e e e s 4.14
4.3.7.2  SAVE 8S AEFAUIL......ciiiii it 4.14
4.3.7.3 Configwith default.............cccoiviiiii 4.15
4.3.7.4 COMPOrt [ICE..MONITOI] ...ciiiiiiiiiiiiiiii 4.15
R S B (Y =Y o 1U = ] =T =T 4.16
4.3.8.1  ShOMt MDEIAY.......ccoiiiiiiiiii 4.16
4.3.8.2  FASE RTC . ittt e e et e e e e s b e e e e s 4.16
4.3.8.3 SN0 BEEP i 4.16
4.3.9  MENU WINUOWS ...ttt ettt ettt e e e s e ettt e e e e e s s skt bbb et e e e e e s s aanbbbbreeeeeesssannnnnees 4.16
4.3.9. 1 TOODA ... e ittt ettt e et e e e r et e e e e e e e bbb e et e e e e e e b e e aaeas 4.16
e I A\ g v oo L= (oo F PP 4.16
4.3.9.3  SOUICE.....coiieiitiiiii ettt ettt e e et e e e et e e e r e e e eaan 417
4.3.9.4  WOTK REGISIEIS ...cciiiiiiiiiiii e 4.18
4.3.9.5  PIrOCESSES ...coiiiiiiiiii ittt 4.19
4.3.9.6  DISASSEMDIET.....cuiiiiiiiii ittt e e e a e a s 4.19
4.3.9.7  COUE MEIMOIY ....ceiiiiiiiiiiiie ettt e et et e e e e e e e e e e e e 4.20
4.3.9.8  DaAl@ MEBIMOIY .. ittt ettt e e et e ettt e e e et b e et e tt e e e e e tareeeeba e e aenbn e aeeneaaaaes 4.20
4.3.9.9  WaALCNES .ottt e e e et e e e e e e b e e e aeas 4.20
4.3.9. 10 POITS. .utttiiteei ittt ettt e e e r et e e e e s E ettt e e e et n bbb e et e e e e e e e nbbbrrreaeeas 4.20
4.3.9.11 PEIPNEIAIS ....cci i 4.20

IV — Table of Contents E-LAB Computers



AVRco Tools

e-lal
4.3.9.12 VIEW THBCE ... etttieit i e e ettt e ettt e e e e e s o ek bbb et e e e e o s o aa b bbb et e e e e e e e s aanbbbbe e e e e e e s s anbbbbeeeaeaas 4.21
4.3.9.13 VIEW PrOCESS SEAES ... iieiiiiiii ettt ettt e e e e e e e e s st bbb e e e e e e e e e e annbbbee e e e s 4.21
4.3.9.14 SysTick / SChedUler tIMINGS.......ccvviiiiiiiii 4.22
4.3.9.15 TermMiNAl IO ...uuueiiiiiiiii ettt e e e e st e e e e e e s e e e e e s 4.22
4.3.9.168 ADC ....citiiie ettt ekt e e E bt e e e e bt e e et bt e e e e anbae e e e ennbe e e e anaeean 4.23
4.3.9.07 KEYBOAIT AXA ...ttt ettt ettt etk e e ekttt et e e e b bt e e anba e e e aabbe e e anraee s 4.24
4.3.9.18 KEYBOAIT 8XB.......ueeiiiiitiieie ittt e ettt ettt ettt e e ettt e et e e e bt e e e b bt e e anba e e e anbbe e e anraee s 4.24
4.3.9.19 LCD QISPIAY - -tteteeutieiet ittt ettt etttk e ekt e e ettt e ettt e bt e e b bt e e e bt e e s anbbe e e anraee s 4.25
4.3.9.20 LCD_M QISPIAY ... eteeeeiittit ettt ettt ettt b bt e b e e e anb e e araee s 4.25
4.3.9.21 TSEY QISPIAY oeeeiiiiiiiiiii 4.25
4.3.9.22 12C 7SEQ AISPIAY ..eeeeiiiiiiiii i 4.25
4.3.9.23 14SEQ AISPIAY .oeeiiiiiiiiiiii 4.26
I O D €] -1 oo o PRSPPI 4.26
4.3.9.25 FIlE SYSIEM ..ciiiiiiiiiii 4.27
IR s T AN 1 TSP 4.27
4.3.9.27 INCE COUNTEL . ...uuuiiieee ettt e et e e e e et e et a st e e e et e e e snr s nneeenaeenn 4.28
4.3.9.28 FreqU COUNTET ....uuiiit ettt ettt e et e ettt e et e tt s e e e et r e e e et e e eetba e eaennnaaaees 4.28
4.3.9.29 12C POMEXPANG ... .ceeiiiitiitie ittt e ettt e sttt e e e sttt e e s ettt e e e e bt e e e e s anbee e e e enbaeee s annaeeas 4.29
4.3.9.30 SYSEM BIINKET ...ccoiiiiiiiiii 4.29
4.3.9.31 SWILCRPOIT ... .eeiii ittt ettt ettt e e st e e e ekt e e et e e e anbbe e e naee s 4.29
4.3.9.32 RCBIECEIVEN ....utttieiiieee ettt ettt et e e e ookt b bttt et e e e s o st b bbbt e e e e e e s s s anbbb b et e e e e e s s anbbbbeeeeeaas 4.30
4.3.9.33 SEBIVOS.....ciiiiitiiiiii ettt er e e eaae 4.30
IR Y o [T o T PP 4.30
R 1 I (=T o] o[ ST PP PPPRTRUPPIN 4.31
0 O T 1V =Y 11 1= o 4.31
4.4 SysTick and Scheduler tiMINgS ... 4.32
4.5 Determine Frame and Stack usage with the Simulator...........ccccccciiiiiii e 4.33
4.6 Frame and Stack check at FUNTIME .........uuiiiiii e 4.34
4.6.1  Extended stack and frame ChECKS..........oo it 4.34
4.7 JTAG / OWD DEBUGGING .. eteiieiitiitee ettt ettt et e e ettt e et e e e st e e e e arbeeae s anees 4.35
o A O T o 1o - Vo I A T 1V o1 Y= o 4.35
4.7.2  HardWare BrEaKPOINTS. ... ..uuuuuuuuuuuueueieueueeuuuernranrasanseseeeeeeseesesseesesreseeeeeseeeeeeseseesessesssssssenmsnnnes 4.36
4.7.3  Tips and Notes fOr JTAG DEDUGQING ...uuvurrrrruuuururunnrrnennnnuinnrnnenrennnrernreereneeeneeeeres 4.37
4.8 Compiler Switches and the CONSEIUENCES..........ccvviiiiiiiiii 4.37
A.8.1  {BDH} B} it e e e e s e r e e e e e e nneeees 4.37
A.8.2 BEA} B E- e e e a e 4.37
5 Lookup and INterpolate ... 51
5.1 Nonlinear fuNCioNS Of SEBNSOIS ...oiiiiiiiiiiiiee e e e eeeeee 5.1
A W1 1T L Y1 o [T PP T TP PP PP PPPPPP PPN 5.1
LI R V) = o T U Vo 1o 1P 5.1
5.3 LookUp Table definition and iIMPOTt ... 5.2
5.4 Creating the LookUp Table With CUrVEGEN ..., 5.3
541 PrOQram SEAIT.......coeie ittt e et e et e e et e e e e et e et e et e e e e baaeeeeba e eeenans 53
5.5 ProPerties Of CUINVEGEN. ...t 5.6
6 Source-Code-Control-System — SCCS ........oooiiiiiiiiieen 6.1
6.1 Overview E-LAB Source-Code-Control-SyStem . ... 6.1
6.2  Strategy Of the E-LAB SCCS ...ttt 6.1
B.2.1  VEISION SEOTE. .. iitiiiieee ettt ettt e e e e ook ettt e e e s s e ab b bbbt et e e e e s s e ab b be e e e e e e e s s aanbbbbreeeaeas 6.2
6.2.2  RESLOIE @ PreVIOUS VEISION...cciiiiiiiiiiiiiiiiiieiiiitieee ettt ettt ettt ettt ettt ettt ettt ettt e e e e e et e et e e e et et e e e eeaeeaeees 6.3
B.2.2.1  OFIgINAI DIFBCIONY ...t 6.4
6.2.2.2  NeW OF different DIrECIOIY ..ooi i 6.4

E-LAB Computers Table of Contents - V



o AVRco Tools

7 Flash DoOWN Loader [ WIILEE ... 7.1
7.1.1  BoOtLOAAEr EXAMPIE....cciiiiiiiiiiiiiiiiiieeee ettt 7.4

VI — Table of Contents E-LAB Computers



AVRco Tools

=5 F
1 Overview

1.1 AVRco Versions

All AVRco Versions support all AVR Controllers with an internal RAM (for the stack). That means in
practice the whole range.

AVRco Profi Version:

The Profi Version contains all available drivers, including very complex ones like e.g. a FAT16 file system
and an extensive library for graphic LCDs.

The professional program development is furthermore assisted by the full support of Units.

AVRco Standard Version:
The Standard Version omits only the most complex drivers, and does not support units.

AVRco Demo Version:
The Demo Version supports all controllers and all drivers of the Standard Version.
The only restriction is the limitation of the generated code to max. 4 kByte size.

1.2 Manual Versions

Chapters marked with the attribute (*P*) are only available in AVRco Profi Revision.
Chapters marked with the attribute (*4*) are only available in AVRco Revision 4.

1.3 Structure of the Documentation

.\E-Lab\DOCs\DocuCompiler.pdf:
contains the Pascal language description and the enhancements compared with Standard Pascal

..\E-Lab\DOCs\DocuStdDriver.pdf:
contains the description of the drivers contained as well in the Standard, as in the Profi Version.

..E-Lab\DOCs\DocuProfiDriver.pdf:
contains the description of the drivers contained only in the Profi Version.

..E-Lab\DOCs\DocuReference.pdf:
contains a Short Reference (the the same as the online help)

.\E-Lab\DOCs\DocuTools.pdf:
contains the description of the IDE, the simulator, a tutorial etc.

..\ E-LAB\IDE\DataSheets\Release-News.txt:
lists the enhancements in chronological order.
The enhancements are documented in the above mentioned .pdf files (DocuXXX.pdf)

.\E-Lab\AVRco\Demos\:
contains many test and demo programs

.\E-Lab\DOCs\ :
contains the documentation and further schematics and data sheets

E-LAB Computers Overview - 1.1



AVRco Tools

=R E]

1.2 — Overview E-LAB Computers



AVRco Tools

=R E]

2 Tutorial
by Gunter Baab

2.1 Introduction

All you need to work through this tutorial is the free Demo-Version of the AVRco.

The AVRco allows you to develop applications for all popular AVR controller types.
You can debug your software with the AVRco Simulator and check the behaviour

on a graphical screen (see the screenshots in the chapters concerning the simulator) !

If you want to go beyond the goals of this tutorial to build and program a working
micro controller circuit of yourself you need knowledge of at least four scopes:

1. the programming language Pascal in general and
the differences, specialities and enhancements of the AVRco Pascal

2. the internal structure of the used controller type

3. the handling of the AVRco package
to create, compile and debug your program

4. more or less hardware knowledge depending on whether you build the circuit
and the programming hardware yourself or you buy commercial parts

This tutorial covers only part 3: the handling of the AVRco
Other parts are only touched.

The first chapter bescribes the installation the AVRco Demo Version.
The only restriction of the demo is the limitation to a code size of 4k.

Maybe you ask (like me at the very beginning):

OK. 4k code size. But what does that mean to a real application of my own?

What can | do with no more than 4k code size and (the High-Level-Language) Pascal?
Is this enough to scan some switches and control some LEDs — but not more?

Oris it even enough to control a LCD and a matrix keyboard?

What overhead implies the use of such a compiler?

The answer | got was not very helpfull: "don't care — the compiler is very efficient".

If you should worry about this limitation have a quick look to the chapter "Multitasking"!

This demo uses a LCD, 8 (debounced) switches, a 6-digit 7-segment display, 6 LEDs and the MultiTasking
Kernel of the AVRco and takes 85% of the available (flash-) ressources.

So it approuches the limits of the Demo.

But your first applications will seldom need this amount of drivers and every driver enables

you to do complex functions with a single call. This reduces the required space for your

own coding to a minimum (maybe some hundred bytes).

E-LAB Computers Tutorial - 2.1



AVRco Tools

=R E]

| hope, this gives you a little feeling to recognize the limits of the Demo.
If you start with small applications (maybe 2..3 drivers) the remaining program space of
the demo takes at least one weekend (or two) to be filled with reasonable code of your own.

The documentation of the AVRco can be found in C:\E-Lab\DOCs\DocuCompiler.pdf.
Especially if you are working through the 2" example of this tutorial, I strongly recommend
to have a printout of this file. There are many cross references to the manual.

The drivers contained in the demo are documented in C:\E-Lab\DOCs\DocuStdDriver.pdf.

2.2 Quick Start — Build And Test An Application - A Step-By-Step
Introduction

If you are new to the AVRco, you should work through this chapter.

The goal is to create as fast as possible a working environment and give you a rapid impression of what the
AVRco is able to do. You do not need to enter a lot of Pascal statements. There is a pre-defined source to
be easily inserted via cut & paste.

What is the application for?

8 Keys select various messages to be displayed on a 2x16 LCD.
Keys and LCD are connected to a Mega8 controller.

The hardware is simulated using the AVRco Simulator.

2.2.1 Download, Install And Start The AVRco (Demo Version)

Download the Demo-Version of the AVRco from http://www.e-lab.de and start the AVRdemo.exe.
This self-extracting file will guide you through the installation process, as usual (1,2).

Click Install and select the desired language for the documentation.
Do not change the default target directory from C:\ to install the compiler to C:\E-Lab and click OK to create
a program group AVRco and then OK to close the message window.

Close all windows and click Start — Programs — AVRco — E-LAB PED-32 to start the the IDE

(Integrated Development Environment). The PED32 (Programmers Editor for WIN32), that serves as a
platform to access the numerous applications of the AVRco (compiler, assembler, simulator and much more)
comes up.

notes

(1): do not worry how to get rid of the AVRco. It comes with an un-installer that removes all changes made
to your PC.

(2): see the Appendix for the differences/restrictions of the AVRco versions

2.2 — Tutorial E-LAB Computers



E-LAB Computers

AVRco Tools

AR Graph1531
AVR Graph1202

VR

AVR Interpol
AR Interrupts
AVR 10expand

AVR KeyBoard3

SWRRTG

AVR RTclnck
AVR RTclocks
AR SelfProg

=R E]

Tutorial - 2.3



AVRco Tools

=R E]

2.2.2 Create Your First Projekt

Click in the Project Administration window the New — Edit — Account tab.
In the next window
- enter Tutor01 in the Name field

- click the three dots in front of the Directory field: the Project Path window comes up

- edit the New Main-Path if not exist field according to the next screenshot

ElProject Path

E-LAB
Computers

| Froj Tutorgt

=

=

HEIDOS
HEE-LAB
EIAVREO
fD0Cs
SiEE
CiMetStack
PITCPStack
HEIPragrameme
HEtermp

HE utility
eI DOVYS

=1 File contents

New Main-Path if ot exist
CAE-LABProjects

X cancel l

- click OK and Yes in the Confirm window that comes up
- enter the MainFile Name and select the Control

I3 Project Administration
Pew - Edit -Account

Praject load/delete |

|Tut0rD1 Name
_! [CAELABProjects: Directory
MainFile

_! ITutorm.pas

A as Control
total account current
ugd_ata-l | [5 Tl !
W | frst 5 Sae]
CT : access
ikl I last
x E}{iti

- click Save and Exit

2.4 — Tutorial

E-LAB Computers



AVRco Tools

=R E]

2.2.2.1 Create A Program Frame

: :
- click the speed button Projekt
- search (in the tab Project load/delete) for the TutorO1 project, select it and click load
- it will take some time to load the Application Wizard
- on the 1% page select mega8 and a Frequency of 8 MHz. Do not change other settings
- click repeatedly next until you see the soft driver import window that contains the LCDport
- enable the LCDport at PortD and chose 2 rows and 16 columns (cols)

EAE-LAB Application Wizzard [AVR] [mega8] Rewv 3.6

i . 5

-+ prev-l soft driver import |
~SwitchPort 1 ~SwitchPort2- -12Cport 12Cpins

1% horie & nhone * none I2C: data .

Bito [=]
) Bl 0 = P |7J|
* Ping € Pink: o Bethek
| Bit1 EJ
0 Pin " Ping S ———
- (o0 - —
 PinD " Pinb = A Chrowe——
PorlD Al CSontroller——
: 2 rows 7 :
€ Hink € HinE ﬂl = HO44750
(o s & X
e P 2 Eliir f16 cois [ = ﬁggzﬁz
Edge Mask | | Edge Mask Sl 2 snaiee) ol
00000000 |[oooooooo
: “Incremental Encoder—— =
F'i?@;y_-__ Eg_l&,irﬂ____ = Fnlimee WE I Hnlaae
00000000 | [00000000 | none  [B] | FinB | B0/ |
| %page.--‘-l at 14

note: the page number (above 4 of 14) may be different. It depends on the compiler version.

- click next until you see the soft driver import window that contains the KeyBoard
(refer to the screenshot on the next page)

- enable the import KeyBoard 4x4 check box

- select PortC and PinC as Row port or column port

- chose PortX.0 as 1.pin row or PortX.4 as 1.pin column

- chose 4 rows and 2 columns

E-LAB Computers Tutorial - 2.5



AVRco Tools

=R E]

EAE-LAB Application Wizzard [AVR] [mega8]

- prwl soft driver import Il ned = |
~Display 7/14segments—— -Stepper——— -KeyBoard :
S Display size & pane ¥ import KeyBoard 4x4
e ron || 14DmTsen (Bl (1 ycerpon || T import KeyBaard 88
1 U, ~Row port— =colmn port—
o I e (s
¢ Pt | EDsL ’ e\psia, | |[ie A
=5 = Ot MEstEs) { PortB e
" PortC - ; " PorB " PinB
C ponp [ Displaytype— || © ForC & PodC
l.rf" 1 r" ., il
€ Pt . i € PotD | | € PinD
= e 7 EorE
e EarE ﬁ = o == { F'ill'ﬂ:_
first-part bit E:_ESP gl R £ € Hirl
e Sl —
Bt g ]
= i E i EHHI
i J £ hiRiohy ‘ 1:pire row 1. piri-column
¥ Bl En st let ST : ]
e steats [ || [Porxn (8] [Porxs [B]
~User Data Device Banlung Port——— | rows colurmng
& |
none E|  none @ ‘ 4 B oz @|
| pagefotl4

note: the page number (above 5 of 14) may be different. It depends on the compiler version.

- click repeatedly next until the last window

EAE-LAB Application Wizzard [AVR] [mega8]

Save new application

~Application basics ——; | Peripheral driver- Application— & ———

| CPU rrggad | SerPort fione. | | Hars

| Ext Ram: 0| | |SerPortz nong |Tut|:|rﬂ1

|Clock:  BO0O00OHz | | | Fhdpart] none File Name

]FSysTick : 10rmsec | P¥ihdpart2 nohe ITutUrD1.pas

|MultiTask:  Standard | | [ADCpet  none

| SysStack : 100 | | | SwatchPort] none

| SysFrame 100 | | | SwitchPon2 none

| TaskStack none | 2Cpont fione.

| TaskFrame none | | | LCDport ForD oty shuw-l & print |
 Heap none | || Disp?s nane

\RTC none | | LAhlpart none.

{L_Cirﬁrapth- nana | KeyBoard used:

| File Sys Siza e | StepperPort nong

| UserDatDevice nong |EF’|pDﬁ nona. stare In|_ et

| page 140t 14

note: the page number (above 14 of 14) may be different. It depends on the compiler version.

- click Build Application, store and finally exit
- the Project Administration is closed an the created frame is loaded into the editor

2.6 — Tutorial E-LAB Computers



You should see now the program frame:

pr ogram Tut or 01;

{ $BOOTRST $00C00}

{ $NOSHADOW
{ $W+ Warni ngs}

Devi ce = nega8, VCC=5;

AVRco Tools

{Reset Junp to $00C00}

{Warnings off}

I mport SysTick, LCDport, MatrixPort;
From System | nport
Defi ne
Procd ock = 8000000; {Hertz}
SysTi ck = 10; {nmsec}
St ackSi ze = $0064, i Data;
Fr aneSi ze = $0064, i Data;
LCDpor t = Port D
LCDt ype = 44780;
LCDr ows = 2; {rows}
LCDcol ums = 16; {col ums per |ine}
Matri xRow = PortC, O; {use PortC, start with bit0}
Mat ri xCol = PinC, 4; {use PinC, start with bit4}
Matri xType = 4, 2; {4 Rows at PortC, 2 Columms at Pi nC}
I mpl enent ati on
{ $1 DATA}
[ oo }
{ Type Declarations }
type
R e EEEE }
{ Const Declarations }
R R RS }
{ Var Declarations }
{ $1 DATA}
R EEEE }
{ functions }
o oo }

{ Main Program}
{ $1 DATA}

begin

Enabl el nt s;
| oop

endl oop;
end TutorO1.

E-LAB Computers

=R E]

Tutorial - 2.7



AVRco Tools

-la

2.2.2.2 Enter The Program
- for your convenience there is a .txt file, that contains the program
- click the Open speed button =]
- change the default file type from PASCAL/ASM Source to Text

- search the file tutor01.txt in C:\E-Lab\DOCs and open it

File Edit ESearch Project Systern |[DE  Tools  Info
B edE 2l @ i]e m S]] Rl 0S| B 4] |l B et Sl 1] o]
System I Project Unit I PCDﬂ‘E‘.' | Tutortd C:‘LE—III:'&IJDI;_S\TI.ItnrM.ml

slabelild File tutorll.txt
2 il support file of the tutorial

2 ) enter the following block behind the lines

I R { Const Declarations }

text ! array [l..2,0..5] of string[le] =

- the text file is loaded in a 2" window

- note the 2 tabs Tutor01 (the program frame) and C:\E-Lab\DOCs\Tutor01.txt

- mark the block starting with const (to the end-marker) and press Ctrl+c (copy)

- note the location where to copy this block (the info above the block)

- click the TutorO1 tab, to open the program frame

- position the cursor to the destination line (in theTutor01 file) and enter Ctrl+v (paste)

- return to the text file and copy the 2" and 3" block to the correct locations

- right-click the C:\E-Lab\DOCs\Tutor01.txt tab and select close file

- complete the type section according the following screenshot
(enter the line starting with t_KeySet)

- note: the "of" is a keyword. The editor shows keywords automatically in bold style

- make sure to enter the line exactly as shown and do not forget the semicolon ";"
(the number of blanks does not matter)

Tmnm1|

Implementation

{SIDATA}

{ Tvpe Declarations }

type
f Keyiet = BitSet of Keys;

2.8 — Tutorial E-LAB Computers



AVRco Tools

=R E]

2.2.2.3 Compile And Assemble ("Make") The Program

- click the make speed button ﬁ to compile and assemble the program

- if you hear, after a short while, a beep and see the sand-glass disappear, your
program was succesfully compiled and assembled. Continue with the next chapter!

- ifyou hear a "chord" and an error window comes up, there is still something wrong

if you got errors:

- click OK to close the error window

- do not try to ignore an error. The compiler/assembler has not yet created the necessary
files to continue

- look at the (first) yellow highlighted line. The (first) error is in this line or above.
Note that the compiler is not always able to locate the exact position of an error.
Once more: the error is frequently located one ore more lines above!

- do not try to correct several errors at the same time!
It is not unusual, that one error produces several error messages

- very often there are spelling errors or forgotten semicolons
- try —step by step- to correct the error(s) and "make" the program again

- if you do not succeed print the source file and the tutor.txt file.
Check the blocks and their location

- you should absolutely try to correct the errors by yourself!
Even if this takes a lot of tries and some time!
This is atypical challange of software development and you need these
experiences for your own projects

when all else fails:

make a printout of the "tutor01.pas" part of the appendix and compare it with
your source. Take special care on the blocks that you copied:

- are these blocks complete ?

- are they at the correct location?

- is the "type" block OK?

the last rescue

delete the whole content of the source file and insert a copy of the corresponding
part of the appendix via cut&paste

E-LAB Computers Tutorial - 2.9



AVRco Tools

=R E]

2.2.3 Check The Program Using The Simulator

- start the simulator with the speed button |.
- the simulator comes up with a lot of open windows.
As we do not want to debug the program (in this example), we do not need any
of these windows
- close all windows exept Main[] that contains the source code you already know
- press Alt+w to open the Windows menu
- your screen should look like the next screenshot

{ §EO®TRST Fdalaledalu}y {Reset Jump to §00CO0F
¢ sH05HADOT) - B
{ $W+ Warnings) {Warnings off}

Device = megad, VOC=5:

Import SysTick, LCDport, MatrixPort:

- select the KeyBoard 4x4

- press Alt+w again and select the LCD Display

- position the windows according the next screenshot

- click some keys and notice how to switch one or more on and off
- switch F1/Keyl and F5/Key5 on, all others off

2.10 — Tutorial E-LAB Computers



AVRco Tools

Project Breskpoints Walthes PBin Exeri  Search  Corfigure  Propeties Windows  Helg

& BlrmElle] 2 2= 3] 5 2 [ sec ey asu| BI@| x|k m| === =

=R E]

Ham, l it I [relude I

program Tutordl: -
{ $BOOTR3T §00C00} {Reset Jump to $00C00}%

{ SNOSHADOW}

{ §W+ Warnings} {Warnings cff}

Device = megad, VCC=5;
Import 3ysTick, LCDport, MatrixPort;
- :
Al 5 = | :
FEY] | Keid | ey | R

I =
Ked | Keyb | KeyT | Keys

- press the run key EJ and watch the LCD simulation

- switch both keys (Keyl and Key5) off and try the other keys (only one active key per row!)

- look what happens if more then one key per row is depressed

- increase the size of the Main[] window and scroll to the Const Declarations

- play with the keys and note the relationship between the keys, the display and the source file

{ Const Declarations }
Const
text @ array [1..2,0..5] of stcring[l6] =
b 'y

' E-Lsk AVRzo ',

'Pascal Compiler!, —J

! Tutorial Yy

"1zt Application',

F1 e st F4

_ . rs | re liem [ ke
the 2nd Line ' Kevs | keys | Keyl | eyl

1
i
i
' zould contain
i
i
i

sowething !
defined by wvou
277 Line 2 277 "))

.
’
:
’

E-LAB Computers Tutorial - 2.11



AVRco Tools

=R E]

2.2.4 Enter Some Own Messages

close the simulator and you are back in the editor
scroll to the definitions of the 2™ display line starting with

' the 2nd Line °,

- note:
-each message is enclosed in apostrophs: ' xxxxxx
-the first message contains 16 blanks and is used to clear the display line
-the following 4 messages relate to Keys ... Key8
-the last message is displayed if more then one key per line is depressed
-the length of all messages is exactly 16 characters to make sure, that a long
message is completely overwritten by a short one

edit one line and enter a message of your own

still be careful ! Do not change too much !

| recommend to keep the fixed line length of 16 for this try

- "make" the program as explained above and correct any errors

start the simulator again and run it (press F9)

note that the simulator remembers the number, size and position of your windows

return to the editor, enter an intentional error (e.g. "forget" (delete) an apostrophe)
and compile the program to see how the compiler displays error messages
correct the error and compile again

- mix shorter and longer messages (than 16) and check the behaviour of the program

if you end up with errors, that you are not (yet) able to correct, see above: "if you got errors"

2.12 — Tutorial E-LAB Computers



AVRco Tools

=R E]

2.3 Build An Application Of Your Own — Take a Deeper Look

This chapter should encourage you to program and verify a very simple
application for a real hardware of your own. The main intention is to demonstrate
how to create new projects and use some important functions of the IDE.
Furthermore, you should get a deeper understanding of the Simulator features
that help you to find logical erors in your software.

What is the application for?

4 LEDs are used to display several patterns. The patterns are selected with a switch.

The switch and the LEDs are connected to a Mega8 controller: the switch is connected

to PortD-0, the LEDs to PortC-0 ... PortC-3.

To minimize the hardware requirements, the internal oszillator of the Mega8 is used (at 1 MHz).
This is the default setting of a new controller and you do not need to change any

fuse bytes. (1)

In this chapter the hardware is simulated using the AVRco Simulator.

In following chapters you will find all you need to build a real hardware and download the
program to it.

2.3.1 Create A New Project And A Program Frame

If you are insecure about the proceeding refer to the correspondig parts above and have a look
at the screenshots!

Start the PED32.exe. Note that the editor remembers your last project and open file(s)
and comes up with Tutor01 loaded

There are several ways to create a new project:
e.g. the speed button project s
the menu File — New Project
the menu Project — New Project
a right-click on the tab TutorO1 and selection of Load Project
and probably more ...
No matter what way you use — the Project Administration comes up (2)

in the tab New — Edit - Account window enter

Name: Tutor02

Directory: C:\E-LAB\Projects\
MainFile: Tutor02.pas
Control: AVRpas (3)

Click save and exit to start the Application Wizard

notes:

(2): for more informations about the fuse bytes download the Mega8 manual (see links near the end of the
tutorial). Be careful and do not play around with the fuse bytes! There are some bits that lock the
controller and prevent a further programming!

(2): use the Project Administration whenever you want to load / create / delete / import a project.

(3): for more informations about "Controls" and "Projects" see the chapter "PED32" !

E-LAB Computers Tutorial - 2.13



AVRco Tools

=R E]

The Application Wizard is used to create a basic program frame for your Pascal source file.
There are a number of pages that allow you to specify your system and select the desired
features and options like the used data types, the on chip options and additional drivers you
want to use. Furthermore, you may define the I/O-ports you need.

The more informations you specify the more complete is the created frame. The wizard
creates the statements to import the drivers, the necessary defines, the initalization of the
ports and a location for the main program.

Important:

use always the Project Administration to create a new application!
You can not create a new application by starting the Application Wizard!

As far as the AVRco can not find the main program file it starts the Wizard automatically.
A manual start of the Wizard is only for special purposes and usually never needed.

In this tutorial it is by far not possible to cover all items. | will describe only the needed parts.
All features are by default disabled. So you can concentrate on the needed ones and enable
them selectively.

Do not worry if you forgot something to specify or made a mistake:

the wizard is "only" an aid and you can add, delete and modify the concerning parts later
with the editor.

Select the mega8 and a Frequency of 1 MHz. Leave the other settings at default (1)
click next.

The following windows depend on the compiler version: the functions of the AVRco are constantly extended
and the number of pages increases. Actually the 2" window is "System and Types Import". These items are
explained in the AVRco Manual.

The 3" window is "OnChip driver import I". At the time all "OnCip drivers" fit on one page. Depending

on the the future development of the contollers and the available drivers there will -maybe- soon a further
page "OnChip driver import II" be inserted. These items are covered in the AVRco- and the controller
manual.

Do the next input in the soft driver import page containing the Switch Port 1:
select PinD and edit the Edge Mask according to the following screenshot

notes:
(1): some options are grayed out, depending on the builtin features of the selected processor type and the
selected options. This is also true for the following pages

2.14 — Tutorial E-LAB Computers



AVRco Tools

=R E]

on Wizzard [AYR] [megag] Rev 3.6

The next pages are called special driver import. The description of these drivers
can be found in the "DocuStdDriver" manual

click repeatedly next until the Port A..C init window

change the Data Direction and Pullup or Output val of Bit O to Bit 3 of Port C

ication Wizzard [AYR] [mega8]

E-LAB Computers Tutorial - 2.15



=R E]

AVRco Tools

click next to the Port D..F init window and edit Port D Bit O as follows

EAE-LAB Application Wizzard [AVR] [mega8]

& arey | ﬂ Port D..F init
~Port D PotE— PortF

Data Pullup ar Diata Pullup ar Data Pullup or

Direction  Output val Direction  Dutput val Direction  Cutput val
gitali [T gito pito[l- [0 mito pito[T [T mito
Eit1[i [0 Bitd Bit1[T [ Bit1 Bit1[T [0 Bitd
pit2[i [0 Btz itz [T itz pitz[” [0 Bitz
pitali [0 Bit3 pita[ [T Bit3 pit2[T [T Bit:
pitali [0 Bite gita[T [T Bit4 pita[” [T mit4
pits[i © [0 Bits mits[ [T Bits pits[i [T Bits
Bit6li [0 Bits wite[l [0 BitE gite[l" [0 Bitk
pit7[T | [T Bit7 pitTl [0 Bit7 Eit7[ [0 Eit7

page 120t 14

The meaning of the Data Direction and Pullup or Output val entries can be found in the

controller manual.

Click repeatedly next until the last page of the Application Wizard

Click Build Application, Store and Exit

You are should now be in the editor with the new program frame for Tutor02 loaded.

press Ctrl+F9 to "make" (compile and assemble) the program frame.

This should not produce any errors

2.16 — Tutorial

E-LAB Computers



AVRco Tools

=R E]

2.3.2 Enter And "Make" The Program

Enter the definitions for the constant "pattern", the variable "sel" and the main program
between the keywords loop and endloop according the following listing.

Note that most of the program is done by the Application Wizard. You have to complete
only the blue lines.

Enter the programm step by step!

Start with the "const" block and "make" the program again. Correct any errors before
proceeding.

Continue with the "var" definition and let the compiler check the syntax (press Ctrl+F9).
The next step should be the bold blue block below the keyword loop.

The last lines can be entered (and checked) one by onother.

Remember that the compiler is frequently not able to locate the exact location of an error.
If you change too much at once it may be hard to find the error(s).

Do not try to correct several errors at once (unless the same type at the same location,
e.g. several forgotten commas). Mostly your statements behind the first error are mis-
intepreted by the compiler.

If you got several errors a click on any error message moves the cursor to the related
line in the source file.

If the "make" succeeds try the following:
- remove the braket at the end of { Const Declarations }
- "make" the programm and notice the error location the compiler assumes
- do not forget to correct your source again

You see: the less you change (or add) at once the easier is the debugging.

pr ogram Tut or 02;

{ $BOOTRST $00C0D0} {Reset Junp to $00C00}
{ $NOSHADOW
{ $W+ Warni ngs} {Warnings off}

Devi ce = nega8, VCC = 5;
I mport SysTick, SwtchPort1;

From System | nport;

Defi ne
Procd ock = 1000000; {Hertz}
SysTi ck = 10; {nsec}
St ackSi ze = $0064, iData;
Fr aneSi ze = $0064, iData;
SwitchPortl = PinD $01;
PolarityP1 = $00; /] polarity

E-LAB Computers Tutorial - 2.17



AVRco Tools

&-la
I mpl enent ati on

{ $1 DATA}

{ Type Declarations }

type

{ Const Declarations }

const
pattern : array [0..3] of byte =

(
%90000000,
941000011,
940100101,
%4.0010110) ;

{ Var Declarations }
{ $1 DATA}

{ functions }

procedure InitPorts;
begi n
Port C. = %90001111;
DDRC: = 9%%0001111;
Port D. = %90000001;
end InitPorts;

{ Main Program}
{ $1 DATA}

begin
InitPorts;

Enabl el nt s;
| oop

i f I np_Raisel(0)

t hen
inc (sel);
sel := sel nod 4;
endi f;
PortC : = not (Pattern[sel] shr 4);
nDel ay(250);
PortC := not (Pattern[sel] and $0F);
nDel ay(250);
endl oop;

end Tutor 02.

2.18 — Tutorial E-LAB Computers



AVRco Tools

=R E]

2.3.3 Some Nice And Useful Feature Of The Editor

- click on the left pane (in the editor) the Project tab and expand all items

Syetem | Project I Unt | Pcode || Tuturuz|

;v constants procedure InitPorts;
o tames begin

il i PortC:= %00001111;
i e gel Byte

DDRC:= %00001111;
PortD:= %00000001;
end InitForts;

éﬂ functions
« Procedure InitPorts
" Procedure 5 _Main
‘. Procedure 0O

- double click sel and the procedures. The cursor moves at once to the corresponding
definition. Especially in large source files this function is very useful.

- position the cursor on a keyword (e.g. behind the "c" of the above "procedure InitPorts;")
- press F1. Note the possiblity to copy the examples via the clipboard to your source.

- destroy the formatting of some lines by deleting leading blanks and "make" the source

e.g:

procedure InitPorts;
begi n

Port C. =990001111;
DDRC. =%90001111;
Port D: = 990000001;
end I nitPorts;

- click the beautifier speed button _’l
- position the cursor behind the  "end Tutor02." - line
(all lines below this statement are ignored by the compiler. This is a save place to
play around with the editor).
enter the first characters of a statement, e.g. md
press Ctrl + <blank> and <enter> to accept the mDelay procedure
- tryto enter a single character and press Ctrl + <blank>

- press Shift + Ctrl + p. This is a keyboard macro and creates an empty frame for
a procedure.

- open the menu IDE — Edit Keyboard macros to see all predefined macros

- remove all test lines and "make" the program again

E-LAB Computers Tutorial - 2.19



AVRco Tools

=R E]

2.3.4 The Simulator — The Only Way To Success

if the "make" was successful open the simulator

to have a better survey close all windows but main[], Global Watches and Ports
enable the SwitchPort in the Windows menu

select the PortC tab at the Ports windows. Arrange and size the windows

Project  Breskpaoirts  MWiatches  Bun - Search Conitgure Propetties  Windows  Help
8 BEmEEE] 8 sl -z ol Fipd 2] [sec ) asm| sl_wl L3 e et -
FAMain ] !l!:i Shiichads WFGlabal Watches
Miaii | Uit | Ichide: 1 Switch1.0
Tutorlz; - 3 Glohal EE@tam i ocal £
e e Giobal | eeprom | unt | Local <[]
{ $BOOTRST $00CO0} {Reset Jump to $00C0O0} ] _ | Idenifier [ Tyme [Value
{ $NOSHADOW} Switch1 2
{ iU+ Warnings} {Warnings off} 3 ) ;I | .jj
Sweitchl 3. -

Device = megad, VCC = 5;

Sutchl 4 : i
Porta PortC IP_;M&:I

Switch1 5 PORTC 7 B &

Import SysTick, SwitchPortl;

%‘oWﬂ.Ch’l:;ﬁr,

Switohl 7

Immmmmmmm

press once F7 to execute a single step (see the menu Run and notice the 3 speed buttons
for single stepping) %l Ezl EE'

This executes the initialization of the variables and the imported drivers and places the cursor
on the first line of your program: the call of the procedure InitPorts.

{ Main Program }
{$IDATA}

J b eq 1 n
o | mierores:

o Enabhlelnts; —]

| loop .-'r.
1| [ Lk

- to step through this procedure press F7
- execute the next command: PortC:= %00001111; (use again F7)
- watch the 1* line in the Ports window (make sure, you have selected the PortC tab)

2.20 — Tutorial E-LAB Computers



AVRco Tools

=R E]

- execute the next command and watch how the register DDR C changes (the 3" line)

- as the next command changes a register of PortD, click the PortD tab in the Ports window

- execute the command and press twice F7. You are again in the main program at the 2"
line: Enablelnts;

- before you proceed to step through the program play with the switches in the SwitchPorts
window and watch the display of Pin D. Note that an open switch is displayd as "1" and

a closed as "0" =

- if you missed a thing you can easily start over by Reset processor El

- try it: Reset the processor and execute this time the InitPorts procedure with F8
(in a single step)

- position all switches to "off" and select the PortC tab before you continue

- press repeatedly F7 and watch the program loop

- remember: we will connect 4 LEDs to Port CO .. Port C3. These port pins
stay at "1" while the program loops. A "1" means: the LED is off !

Hold F7 depressed (to constantly loop) while watching the Ports window

- note that the if-statement never becomes true and the statements inside the
body of the if-statement are never executed

- the variable sel is used to select the display pattern. What is its value?
Search for one occurence of the variable and double click it. This opens a
window to edit the variable or Add it to WatchList. Click Add to WatchList and
close the window.
- note the variable in the Global Watches window while you loop through the program

- click the blue circle in front of the line inc (sel); to set a breakpoint =

A Main [] P 3
Main i Urit | Include |
loop :J
o if Inp Raisel(d)
then
= inz (=zel):
el sel = sel mod 4
endif;
o PortC := not (Pattern[sel] shr 4): —J
o mbelay (250) 2 :
o PortC := not (Pattern(sel] and 30F) __I:J
1! | 3

- press F9 to (free) run the simulator. Note the clock icon and the grayed out speedbuttons.
The program is now running until you stop it or the program flow reaches a breakpoint

E-LAB Computers Tutorial - 2.21



AVRco Tools

=R E]

- simulate a key hit by positioning the Switch1.0 to on and back to off (not too fast!)

- the if-satement becomes true, the program flow reaches the breakpoint and the program stops
- continue with one step (F7) and see the new value of the variable sel

- hold F7 depressed and watch Port C: the first alternating pattern is displayed

- repeat the last steps (F9, key hit, F7) and watch the next pattern(s)

- stop the simulator (if it is running) @ and remove the above breakpoint by
clicking on it.

- press Ctrl+F9 to start the Animate function or use the speed button @l

- play with the switches. Note that only Switch1.0 changes the pattern.
The simulated controller is running at a very low speed to make the changes
visible. As the SwitchPort is debounced it takes some time (some processor clock
cycles) to accept the switch as on or off.

- stop the simulator (if it is running) and position the cursor at the line inc (sel);
in the source window.
Press F4 Goto cursor pos or the speedbutton | % | and simulate a key hit

The simulator is an undispensable part of the AVRco and not only nice-to-have!
No first version of any program will ever run as desired. And if, nevertheless, it does, be twice
as suspicious — the experience tells that the bugs exist but are well hidden.

The above covered techniques should be sufficient to debug many simple programs.

If you start using more complex functions like interrupts or MuliTasking there are a lot of more
useful features in the simulator. Most of them are self-explaining if you understood the concerning
background: e.g. the use of the internal EEProm.

Other functions, as the debugging on assembly level, should rarely be necessary.

Unfortunately the builtin help of the simulator is not yet available.

If you experience heavy problems follow the guidelines in the chapter "Additional Ressources: The AVRco
Documentation”.

2.22 — Tutorial E-LAB Computers



AVRco Tools

=R E]

2.3.5 Get More Useful Informations

- in the editor choose Project — Project Informations or click | & | to open the following window

r;.‘ Project information [Tutor02]

Flash used: - Register used [DATA]

Available: Used: Free: System uses: R0 .R7 and R16.F31

$02000 00276 $0100A Available: 8. RF15 Used: none

akE 1kE % TkB 93%

Section Start End Bytes Iﬂterrjal Rt beat IDATH

Vector Table $00000 $00026 38 ?EZHE"'“ 'gEEtCI;EE'QD?f ;593"88 -
; ‘ ] ' a

Code FO0026  F00214 500 1074 200 24

Constants  $00214 $00225 12

nternal EEprom used [EERPRCM]

Available: Used: Free:
0200 $0000 0% $0200 100%
812 1] 512

B Symbals

One handicap of the microcontrollers is the limited amount of ressources.
Use the above function to get an overview of the used ressources:

- Flash
-the program memory
-you see an available size of 8kB. This is true for the Mega8 controller. But keep in mind
that the AVRco-Demo is restricted to 4kB
-pay special attention on the Used entry: including all system imports Tutor02 needs only
about 1kB. There are still 3kB available for your program (and flash-stored constants) (1)

notes:
(1): be aware that the AVRco includes only the necessary parts of a system library:
e.g.: if you import "float" and use only a float multiply, the (assembly) subroutine for float divison is not |
ncluded!
Check it out when you have finished the tutorial:
try a:=a*1l.5; a:=a/0.5; and check the code size.
Start over and
try a:=a*1l5; a:=a*2.0; andcheck the size again.
Open the .Ist files. Scroll down to the end and compare the section "Imported Library Routines" in both
cases.

E-LAB Computers Tutorial - 2.23



AVRco Tools

=R E]

[DATA]
-the processor registers (1)
-is (actually) not important. Only for advanced programming techniques.

[IDATA]
-the amount of Ram used for the variables (your own and variables the AVRco uses
internally). As there are still 80% free: no reason to worry about

[EEPROM]
-only important if you use the internal EEProm

choose (in the editor) Info — Internet update to see your current version of the AVRco.
Check regulary the E-LAB home page for enhanced versions and pay attention to the
latest DocuAddOnV-x

open the symbol file C:\E-Lab\Projects\Tutor02.sym to see the symbols the AVRco has
defined. Compare them with the controller manual and note that you can address all processor registers by
their names

refer to the chapters "types — BIT" and "System Library — BIT" Processing of the "DocuCompiler"
manual to access single bits with symbolic names

e.g. to access the Carry Flag (bit 0) of the Status Register (SREG) as variable "CFlag"
you may define

var
CFlag [ @BREG 0] : Bit;

or (3)

{ $PDATA}
CFlag [$5F, 0] : Bit;
{ $1 DATA}

notes:

(1): the amount of available processor registers depend on the inluded drivers. Use this info when your
project is nearly finished to decrease the code size and increase the speed (see the "DocuCompiler"
Manual)

(2): refer to the chapter Compiler Switches of the "DocuCompiler" manual for explanations of {$PDATA} and
{$IDATA}.

{$PDATA} tells the compiler to address the internal processor registers.
Make sure not to forget the {$IDATA} to address the Ram area of the controller for subsequent defines

2.24 — Tutorial E-LAB Computers



AVRco Tools

=R E]

2.4 The Internal EEProm

the internal EEProm provides a non-volatile memory area that can be accessed
either at runtime

e.g. to store user preferences, calibration values etc. that must be available
at next power-up

or already at compile time
e.g. to store fixed menus, lookup tables etc.

Although any value, already known at compile time, may also be stored in the flash,
an EEProm storage can free flash memory for program code.

There are several ways to access the EEProm with the AVRco.
Refer to the dedicated chapter of the "DocoCompiler" manual! (1)

If you specify EEProm data in your source file (see {SEEPROM} compiler switch) using the StructConst
directive the AVRco creates an additional file with an .eep-extension. (2)
This file must, besides the program file for the flash memory (extension .hex), be
downloaded to the controller.
Ususally the programming sotware has the options (3)
- read / write / verify all (Flash and EEProm)

- read / write / verify Flash

- read / write / verify EEProm

erase all (Flash and EEProm)

notes

(1): access to EEProm is by far not so straight forward as access to RAM. It needs a specific handling and
timing.
The AVRco takes this burdon: you can treat EEProm nearly the same way as RAM, but you should be
aware that an EEProm access is much slower than a RAM access!

(2): note that you have to define any data to create this file. You may also define variables in the EEProm
area. This reserves only the necessary bytes but does not create an .eep-file. See the STRUCTCONST
statement on how to place constants in the EEProm.

(3): some programming software defaults to other extensions (e.g. .e2p for EEProm file) and you have to
change the extension before browsing to the file

E-LAB Computers Tutorial - 2.25



AVRco Tools

=R E]

2.5 Additional Ressources: The AVRco Documentation

The compiler documentation is contained in C:\E-Lab\DOCs\DocuCompiler.pdf.

The drivers are in C:\E-Lab\DOCs\DocuStdDrivers.pdf documented.

Complex drivers that are only supported with the AVRco Profi Version can be found in
C:\E-Lab\DOCs\DocuProfiDrivers.pdf

The additional programs in this manual C:\E-Lab\DOCs\DocuTools.pdf

The actual enhancements are documented in C:\E-Lab\DOCs\DocuAddOn.pdf.
The most recent DocuAddOn.pdf can also be downloaded from the E-LAB homepage.

2.5.1 How to Find all related Informations?

- the first ressource are the AVRco manuals

- new drivers are frequently published together with an example. The related files can

be found in C:\E-LAB\AVRco\Demos.

- if you have a very specific interest or problem, it can be helpful to search the C:\E-Lab

directory (including subdirectories) for files containing typical keywords

- if you do not succeed search the AVRco forum on the E-LAB home page for the keywords

- the last rescue:
poste your question in the E-LAB AVRco forum.
Although most threads are in german do not hesitate to post in english!

2.26 — Tutorial

E-LAB Computers



AVRco Tools

=R E]

2.6 What Hardware Do You Need?

As mentioned above the hardware is very simple.
All you need, besides the controller, the switch and the 4 LEDs are 5 resistors and 2 capacitors.
The current consumption is far below 50mA and depends on the on/off state of the LEDs.

+5U +5U
Dl...D4
LED
RS
18k Rl ... R4
1 ’s 226R gV 2V 2V 2V
PC&C/RESET) Pcacance) |23 —
c1 0o pcicAncy |22 —
__ 22 AND PC(ADC) |23 —
- 2 AREF PCXADCS) |25 —
10nF AUCC PC4¢ADCA/SDA) 27
PCS(ADCS/SCLY |28 -
» 21 PR&CXTALL/TOSCD) o
f 18 1 pgr¢xTAL2/T0SC2) PDBCRXD) g 21/12
POICTXD) (-
c2 5 PO2(INTG) |-
. GND POXINTL) |-
188nF 5 POACXCK/TO) |-
uee poscTy (L
PD&CAINGY T
J . PD7C¢AIN1Y |—
GND GND
PRACICP) %
PB1¢OC1A) ?
PB2(SS/0CIB) [S
PBI(MOSI /0C2) (2
PB4(MISOY |—F—
MEGAS PBSCSCK) 12

Note that the LEDs are connected with a command anode. A "0" at a port will switch the LED "on".
The switch is connected to GND. PDO becomes "0" when the switch is depressed.

LEDs and switch are "active low".

By setting the correspondig Pullup or Output val bits we made sure that the initial state of the LEDs
is off and the internal pullup resistor at PDO is activated.

If you want to setup a hardware by our own, the easiest way is the use of an breadboard.
Pay special attention on the power supply! A supply voltage above 5.5V may destroy the controller.
Should you not have the necessary hardware knowledge | recommend the use of a commercial

mini-board and power supply (see links near the end of the tutorial).
If you use a commercial circuit edit the ProcClock Define and enter the correct frequency!

E-LAB Computers Tutorial - 2.27



AVRco Tools

=R E]

2.6.1 Some additinional hints concerning the hardware

1. remember: controllers with an "internal oscillator" option (like the Mega8) are delivered
with the fuse bytes programmed to: "internal oscillator at 1 MHz". The XTAL 1/2 Pins are
at delivery defined as general purpose I/O pins.

To use an external crystal oscillator you have to change some fuse bits. Refer to the example
in the appendix for a Mega8 running at 8 to 16 MHz.
It is a good idea to document the default and new values for later reference.

again: be extremely careful with the fuse bytes!

before making any other changes read and understand the corresponding section in the controller
manual!

Take special care on how the bits are presented by the programming software. The controller
interprets a value of "1" as unprogrammed and a value of "0" as programmed.

Some programming software displays these bits "inverted"!
e.g.: as check-boxes with checked=programmed="0" and unchecked=unprogrammed="1".
Although this should be to your convenience it may be very confusing.

The fuse bytes are accessed like the flash and EEProm memory with a programmer
and a programming software.

2. take care: the newer controllers with 40pins and above (like the Megal6) come with a builtin JTAG
interface. This interface uses 4 port pins and is, at delivery, enabled. These port pins can not be
used as general 1/0Os without changing the fuse bytes.

e.g.:

the JTAG on the Megal6 uses PortC 2 to PortC 5. To use these ports as general I/O pins

you have to disable (= unprogram = set to "1") the JTAGEN hit.

3. afrequently asked question is the value of the capacitors for an external crystal oscillator.
This value depends on the oscillator itself and is specified by the manufacturer of the
oscillator (not by the controller!).

Place the crystal oscillator and the capacitors as close as possible to the controller.
The value of the capacitors is not very critical and 22pF fits in most cases.

4. to display the clock signal on an oscilloscope use a probe with an attenuation of 1:10.
Check only the XTAL 2 pin - not the XTAL 1 pin (this may stop the oscillation because
of the additional load of the probe)

5. another source of confusion is often the behaviour of character LCDs that are only connected
to the supply voltage. As long as the display is not properly intilialized most displays show
the odd lines as black bars, the even lines stay bright
e.g.
-on a 2-line display the 1% line is black, the 2" bright
-on a 4-line display the lines 1&3 are black, 2&4 bright
Do not worry. The LCD is not faulty. This is "normal". But take care: before you buy a LCD
make sure, the AVRco supports the controller type the LCD uses (the display-contoller is a SMD chip
(or several) mounted on the rear of the LCD board). The supported types can be found on the LCD
port page of the Application Wizard.
Unfortunately some so called "compatible" controllers are not "compatible enough" and cause
problems.
If you do not see the the bar(s) check the contrast-voltage. LCDs with an enhanced
temperature range (for automotive applications) need a negative contrast-voltage (as the
Grahic LCDs do). Take care to use the correct section of the datasheet:
most LCDs are manufactured in several versions (temperature ranges) and use different
ranges of the contrast voltage.

2.28 — Tutorial E-LAB Computers



AVRco Tools

=R E]
2.7 What Do You Need To Program Your Hardware?

the AVRco creates a program file (e.g. ...\Projects\TutorXX.hex). This file must be transferred

to the internal flash memory of your controller.

Maybe it created also an EEProm file (e.g. ...\Projects\TutorXX.eep). This file must be transferred to the
internal EEProm memory of your controller.

Until now these files reside on your harddisk. To download them to your hardware you need

1. some kind of connection between your PC and your controller hardware
2. asoftware that transferers the file(s) and is able to check them (via read-back)

The controllers offer several builtin functions to write/read/erase the internal memory areas.
This chapter describes the most popular one, the SPI (Serial Peripheral Interface).

The others are
- the "Parallel Programming Mode" that is very complex and
- the "JTAG Mode" that is only available on controllers with >= 40pins and has a lot
of extended features (like OnChip debugging)

The SPl is a synchonous interface that allows data transfers from/to peripheral devices.

At a Reset (while the Reset pin is held low) the SPI enters a special "Serial Programming Mode*
that allows to access the internal memory areas.

The Serial Programming uses the pins SCK, MOSI and MISO for data transfer. (1)

These pins (+ Reset) must be controlled by the PC.

On the PC there are actually 3 types of interfaces to connect such an equipment:
a parallel port, a serial port (= V24 = RS232) or an USB port.

To avoid confusion:
- the programming is always done serially (also with the parallel PC port!)
- the "Parallel Programming Mode" has nothing to do with the parallel PC port
(here is the "program" and "verify" done in parallel)

To connect the controller to the PC you need a programmer hardware (called ICP - In Circuit
Programmer or ISP — In System Programmer).

All types of programmers can be found:
serial/parallel/USB connected, professional and do-it-youself types.

And you need a programming software that fits to your programmer. There are also commercial
and free versions.

As the do-it-yourself programmers (usually published together with a free software)
cause very often problems, | recommend the use of a commercial one.

Links to do-it-yourself programmers and free software can be found near the end of the tutorial.

Furthermore all programmers / programming software allow you access to the
configuration bytes (fuses) of the controllers.

Note:
(1) there are exeptions like the Megal28. Check the Controller Manual!

E-LAB Computers Tutorial - 2.29



AVRco Tools

=R E]

E-LAB offers different types with serial (V24) and USB connection and the AVRco comes
with a programming software for these programmers. The software is an integral part
of the IDE, so you can use a speed button to download your application file(s).

This is the most secure and convenient way to program your hardware.

The commercial versions (standard and profi) of the AVRco come already with a programmer included. The
standard version includes a V24/RS232 type “ISP-V24”" and the profi version includes an USB type “ISP-
USB” which also serves as the JTAG-ICE debugger.

All E-LAB programmer types support both modes, JTAG and SPI programming.

2.7.1 How To Use The E-LAB Programmer (serial programmer, SPI mode)

connect the programmer to your PC and your hardware and power the system on.
Refer to the programmers-manual for the different modes to provide the power.
Compile your project with the desired frequency value and frequency source. (1)

Press the Prommer speed button in the IDE Iﬁl to start the programming software: AVRprog.exe

Note:
(1): it does not matter that some new controllers come with the internal clock source at 1 MHz selected.

The first step of the programming cycle is to set the fuse bits and select the correct ferquency.
All further programming is done with that clock selection.

2.30 — Tutorial E-LAB Computers



AVRco Tools

=R E]

IEAE-LAB ICP-ISP Programmer [AVR] [tutorD2]

Eile

Device Program  Options  Encrypt Help

e

At:tinn: nape

adress

(1]

oi 0z O3

04

05 05 07 08

(5]

CEA

OF OC OD OF OF

oooooo
oooolio
ooooz0
oooos0
oooo40
oooos0
000060
oooovo

57
03
FE
iz
i1
io
Fz
EF

co
C1
co
EBE
23
91
ED
91

oA
7a
FA
og
o9
60
EF
ED

C1
co
co
85
F4
ao
93
aF

o9
01
=]
F&
ac
04
FF
Fi

C1
C1
co
DF
co
ED
93
iF

[B]
oo
iF
io
io
AR
io
14

C1
C1
ED
ES
91
Do
91
91

ov
FF
15
21
60
io
60
Z4

C1
co
EE
ZA
oo
ZF
oo
ED

[E13]
FE
iF
=]
13
io
o1
=15}

C1
co
ED
94
85
93
ZF
Do

a5
FD
14
io
io
60
i1
io

C1
co
EBE
ED
93
oo
27
85

04
FC
i1
c5
60
EZ
FF
15

C1
co
ED
Do
oo
Ez

=l

N A A

adress

oo

o1 0z 03

(5

05 06 07 05

o9

(554

OB OC OD OE OF

ascil

oooooo
oooo1o
00000
ooooE0
000040
000050
000060
oooo7o

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF

(CPU: MEGASR

(Clack : 16000000 | 4.38valt |Pragrammer at COM

All needed informations are automatically transfered from the IDE to the AVRProg:

- the name of the flash file

- the name of the EEProm file (if available)

- the controller type
- the clock frequency

and the file(s) is (are) loaded.

Note: the "Programmer at COM1" message at the lower right corner. This indicates
the programmer has been successfully detected.

Press the Device Check speed button ﬂ

On a new Mega8 you should get a message like:

E-LAB Computers

ElDevice State

- Device
cRU

Flash =ize

MEGZAE

. B182 bytes:

EEprom size
Device state

Signature

512 bytes
Bimpty
1E 9307

—Programmet
Matme ISPA24

Flrtmseaes: 31

Update ; 030807

EE3

—Application
Mame
Flazt Lised

butorg:

; SSDbﬂEQ

EEprom used

~Enwironment

1 MHz

]4.9?\#0&

| off

5

Tutorial - 2.31



=R E]

IMPORTANT :

AVRco Tools

if you start the AVRprog the very first time with a new project you
MUST at first select the Programmer Options!
This has usually to be done only once (because the AVRprog stores
your selections for each project).
See the following pages for guidelines!

THIS MUST DE DONE (once) FOR EACH NEW PROJECT!

The AVRprog defaults to "program Flash, EEProm and Fuse Bytes".
The default for all fuse bits is inactive (binary "1").

e.g.:

without the correct selection the first programming cycle will set a Mega8 to
"External Crystal / Ceramic Resonator” (CKSEL 3..0="1111").
In oder to access the Mega8 again and change this selection you need to connect
such a clock device (if you do not already have).

2.7.2 How To Set The Programmer Options For a New Project
goto "Options" — "Programmer Options"

the programmer has not yet read the fuse bits and all are unchecked

press "Refresh" to read the bits from the controller (note the controller type in
the header line)

you should see now the actual state of the fuses (below the factory default)

I3 Options [MEGABS] [tutor02] B |

Fuse bits AVR

~Lockbits AR

READ WRITE it READ WRITE ]
ckeelo[ o [ GKsELD (R =E I
GKREELT [V 1 [ GKeEL tez[ 1 [ LBz
cKEELZ[F 2 [~ cKaEL BLeot[— 2 [~ BLas 'Ta'ﬂ“ﬁ“ e
el CKEELIV 3 [ cKeELS BLeoz[— 3 [ BLEnz e
[ inverse Reset sUTOlV 4 [ suTo BLENT[ 4 [ BLBI1 ™ Wte Caibte _more |
¥ PushiPul Reset suTi[ 5 [ suTt pLeiz[” s [ BLe12 ~PavverSupply & clocks
Raset Delay BODEN] B [ BODEN - B[ - 1 MHz
default JE BODLEVEL[ 7 [ BODLEVEL ~-CzE- T
~Hiigh Fuise kifs AYR ~General
 READ WRITE it [~ Blarik check after erase
BooTrRaT[ | O [ BOOTRET ¥ program Flash,
BooTszo[ 1 [ BoOTSZ0 I= | prottem EEpram
BOOTSZI [ 2 [ BOOTSZI I igriore felse D
EEsavEl | 3 [ EESAVE [ Auto relesse Target
CKoPTI 4 [ cropT TR
sPEEN[ 5 [ =
woTon[ B [ woTOoN #pm_g{"usesl prlnt |

rReTDISELI 7 [ RSTDISBL

2.32 — Tutorial

E-LAB Computers



AVRco Tools

- if you get an error message like

=R E]

W%  wrong Device-ID 000000
MEGAS expected

the controller fuses are (already) wrong and you need to apply the correct clock source
to re-program the chip. There is no information what kind of clock source is "correct".

- If you blew your controller with the AVRprog most likely all fuses are disabled.
A Mega8 needs an external crystal or resonator to be accessed ("CKSEL3..0" are "1111").
For other controllers refer to the controllers manual for the meaning of "all fuses = "1".

- note that the JTAG programming mode does not need a clocked controller

- if you do not have a error message select the bits to WRITE.

e.g.
if you use the default (internal oscillator at 1 MHz) check the same bits

|
I3 Options [MEGABS] [tutor02] [ 2] x|
~Fuse hits AR ~Lockbits AR
REAL ARITE I} READ INRITE o
ckeeLD[ O [ GKEELD e1l ol Lm
CKEELT [V 1 [¢ GKSELY Lez[ 1 [ Le2
; ; : T Calibration bytes
creELz[F CREELZ BLEOT[ BLAD :
G L : 2 ’ | $9a wal | BIFFE -addr
“Reset options——— CKSELZ[v 3 [ CKBELS BLEDZ[ 3 [ BLBOZ e
[ inverse Reset suTolv 4 [ SUTD BLE11[ 4 [ |BLB11 | = Cal Byte _mora_|
[ PuskiPull Reset suTi 5[ sum BLE1z[ | 5 [ BLBIZ ~Poyversupply & clocks
Reset Delay BODEN[ B [ BODEM == e [1 iz
default |5 BODLEVEL] ™ 7 [ BODLEVEL < | e = | off B}
~High Fuss bits %R ~General
READ ARITE I} [ Blark check after eraze.
BooTRET[ O [ BOGTRET ¥ program Flash
BoOTSZ0 [ 1 [V BOOTSZ0 [T | prriatem ECHrom
BOOTSZ1 [ 2 [+ BooTSZ! I forore faise 1D
EESAVE I'_ 3 r_ EESAVE r Agtﬂ relesse Target
-ComPot————— cKORT 4 [ CKORT ¥ program Fuses-
W program Lockbits
automatic @ _SP”ENI? 5[ - e
WDTONF— B F_WDT-ON é"pmg Fusesl print '
Mﬂ! ReTRISEL] | 7 [ RSTDISBL :
short USE lanm  cise |

E-LAB Computers Tutorial - 2.33



=R E]

AVRco Tools

or, if you want to select an external clock from 8 to 16 MHz (see Appendix) un-/check

J

3 Options [MEGAS] [tutor02] 7]
—Fuse bits AR ~Lock bits VR
. READ WRITE ™ . READ WRITE c]
CHRSELD[ O [ CKSELD e1l ol Lm
CKEELT[W 1 [ GKSEL ezl 1 [ LBz
cksEL2[¢ 2 [ CKeELZ BLeoi 2 [ BLEm | Calibration bytes :
e e CKEEL3[F 3 [ GKSELS BLBoz[ 3 [ BLBO2 394 val [ SIFFE mddr
I lnversspeset suTol 4 [ suro BLeil 4 [ BLBI I~ Wte CalBite more, |
v PushPull Reset suTi 5[ sum EILEI12r 5 [ BLB1Z2 - PowerSupply & clocks
Reset Delay BODEN] B [ BODEM s EL 16 MHz
default |53 BeDLEVEL[ 7 [ BODLEVEL == | off B}
—High Fugs hits AR —General
READ WRITE = [ Blank check after ersse.
BooTRsT] 0 [ BOOTRST ¥ progrsm Flash
ponTszolv 1 [ BooTsZo [T | pristitan EEpram
BOOTSZ [ 2 [ BOOTSZI [ ignore false D
EEsavEl 3 [ EESAVE L jitatomie it
B — CKOPTI™ 4 [ cKoPT IV progam fuses
W program Lockbits
autormatic @ ._SHENI? 5[ - e
WDTONE B PWDT.ON é‘pmg Fusesl prlnt I
LR R reToiSBL] 7 [ RSTDISBL
shot USE lonm ' Qeetresh | [ o gose |

- to download your project press the Program speed button of the AVRprog @

after the download your hardware stays locked. That means the Reset of your
controller is held active (low)

to start the program click the traffic light

A-::‘tiu-n: none

the Reset pin is released and your applications starts

Actinn: run

if you prefer to start your application as far as the download ist complete select
the programmer options and enable the "Auto release Target"

~zanersl

[ Blank check after erase
[ program Flash

I Pl et e
[ ignore falss 1D
r
Vp
¥ program Lockhits
Forog Fyéesi B prirt |

%[&fresh I W Close l

- note that —depending on the project and the controller- some options may be
"grayed out".

e.g..

above the grayed out "program EEprom" selection as there is no EEProm file available

2.34 — Tutorial

E-LAB Computers




AVRco Tools

=R E]

- note that AVRprog presents the logical state of the bits:

—Fuse bits AWR
READ WRITE o
CKEELO[ 0O [ CKSELD
CKEELT [ 1 [ CKSELT
CKEELZ [ 2 [ CKSELZ
CKEEL2 [ 3 [ CKSEL3
SUTO[W 4 [v UTD
sUTi[ 5 [ suUTt
BoDEM[ & [ BODEM
BODLEVEL[ 7 [ BODLEVEL

e.g.: CKSELO is not activated, CKSEL1 ist activated

if you are confused or want to compare the bits with the controllers manual click the
checkbox in the upper right corner to display the binary values of the fuses

—Fusze bits AVE
READ WRITE
CKEELO[T 0 [T CKEELD

CKEEL1[0 1 [0 CKEELI
CKEELZ[O 2 [0 CKEEL2
CKEEL2[0 3 [0 CKEEL2
sutofD 4 [0 suTD
SUT1[T 5 [T sUT1
BODEM[T & [T BODEM
BODLEVEL[T 7 [T BODLEVEL

2.8 At A Glance: Multitasking

The following paragraph is an exerpt from the AVRco manual: Introduction to Multitasking:

With a socalled Embedded Application (Single-Chip application) often there is the problem, that several jobs should
be done at the same time. For example the characters of a serial interface should be fetched, checked and perhaps
they should be converted from hex into an integer.

At the same time ports should be watched by limit-switches or a LED should flash. Additional a measurement value
should be gathered by a poti and this value should be passed as a control output to an external controller. And the
controller should calculate an output value in a fixed time grid.

So the programmer has the problem with all these targets to do all things concurrently. The programmer is in the
difficult situation to watch several processes at the same time, whereby he must pay attention, that all functions
have to run concurrent and independent..

With simple time-loops etc. this problem can not be solved any more, maybe with tricks, which make the program
nonelastic and bovine.

So a solution is needed, which makes it possible to distribute the jobs, that they often get a chance as far as
possible, but do not block other jobs. Such a system is called Multi-Tasking, whereby task is a job/assignment.

To demonstrate the advantages of Multi-Tasking in this tutorial | use features that are well visible
in the simulator. They represent functions like the above mentioned in a real application.

E-LAB Computers Tutorial - 2.35



AVRco Tools

=R E]

2.36 — Tutorial

The demo uses a 1*16 LCD to display a long message (43 character string) as a moving message.
A 7-segment-display shows simultaneously the start-index of the actual displayed substring.
Furthermore there are 6 LEDs that are periodically switched on and off.

These are the "background jobs" that have to be done concurrently to the "main-job".

The "main job" reads a switch and toggles a state variable that determins the desired LED

state (flash/off/on).

Open the Project Management and load the TutorDemo project!
Start the simulator:

SiitchPans E3|

Main Uil Include o ‘ Switch1 0

program Tutorlemo: i.‘:'.

.@.'Swﬁchn

{ $EBOOTRST $00C0O0% {Rezet Jump to §00CO0% Ijl

{ §W+ Warningsi {Warnings off} !@,ISwlch’l,'.’..

=

Device = megal, VOC = 5 !m.|9wich1..3_=.

1=l

Import 3ysTick, LCDport, Disp7sPort, 3ysLEDblink, S : !m,|3wich1.4

1=l]

From System Import Tasks, Processes: !@.I'Swﬁoh’l\ﬁ'

| —}

Define l@, | Switchl B
ProcClock = 1&000000; {Hertzl El
SysTick = 1; frusec){real: 10} !m.|'swnch1.?
StackSize = §0064, iData; 1=l

Run it (F9) and try Switch1.0 (remember: not too fast).

Have a look at the "Main Program": it only checks the switch and sets the state of the LEDs.

The moving message, the "-SP-Display" (StringPointer) and the LED on/off sequence is done without
any statement in "main".

Imagine the big advantage for you:

you build and test a single part of your application. Let's say the moving message.

As far as this part is working you define it as a background task and free your main scope of this
burdon.

Or the "System Blinker":

no matter where you change the LEDstate to FlashOn in your program —

the flashing is done by the background process. You do not have to worry about it anymore.
And you do not even need to define a task for it. The System Blinker is part of the scheduler
and must only be imorted (the scheduler is the "supervisor" that handles the task switching).
But be aware:

this example shows only "low priority tasks". It may take some milliseconds longer to accept

a switch or to toggle a LED - this does not matter all all in this example.

As far as you specify "realtime-jobs" as tasks (or processes) and must guarantee a certain
time to react, Multi-Tasking becomes high sophisticated. Such systems need a complete under-
standing of the underlaying Multi-Tasking techniques including priorities, semaphores, pipes etc.

E-LAB Computers



AVRco Tools

=R E]

2.9 Useful Links

E-LAB Homepage: http://www.e-lab.de/index_en.html
AVRco: http://www.e-lab.de/AVRco/index_en.html
includes links to Pascal Tutorials
Programmers: see Hardware / Programmers
Mini Boards:  http://www.e-lab.de/diverse/components_en.html
Datasheets:  http://www.e-lab.de/AVRco/avr_sheets.html
Forum: http://www.e-lab.de/phpBB2/

English Forum: http://www.avrfreaks.net/
Controller Manuals: see Devices

Do-it-yourself programmer and programming software:
http://www.lancos.com/prog.html
http://users.skynet.be/jiwan/Electronique/English/AVR%20Prog.htm
http://mww.myplace.nu/avr/yaap/index.htm
http://s-huehn.de/elektronik/avr-prog/avr-prog.htm (german)
http://In.com.ua/~real/avreal/index_e.html (command line program)

WARNING:

there are some very simple parallel programmers that consist only of a few resistors.
These are NOT recommended for a regulary use. Bugs in your hardware could easily
destroy your parallel port of the PC and they imply other restrictions.

But they can sometimes be useful to check whether you have a programming hardware or
a programming software problem.

A lot of different links to all subjects can be found at

http://mww.mikrocontroller.net/links.en.htm

E-LAB Computers Tutorial - 2.37



AVRco Tools

=R E]

2.10 Appendix

2.10.1 The AVRco Versions

E-LAB offers two versions of the AVRco:

- the Standard Version
the Standard Version supports all popular AVR controllers and comes with
drivers for near all of the builtin functions ("On Chip Drivers") and a huge
amount of drivers for additional hardware ("Soft Drivers").
It includes also a V24/RS232 programmer “ISP-V24” which supports SPI and JTAG programming.

- the Professional Version
in addition to the Standard version, the Professional Version supports advanced
features like support for:
Units, Graphic LCDs, File System, IP Stacks (UDP and TCP), Heap and JTAG
Debugging. It includes an USB programmer “ISP-USB” which supports SPI and JTAG programming
and also JTAG debuggung.

As mentioned above, there is the free Demo Version on the E-LAB homepage. The only difference
between the Standard Version and the Demo is the limitation of the Demo to 4k code size. Besides this,
it comes with the full functionality of the Standard Version.

2.10.2 Source File TutorOl.pas

program Tut or 01;

{ $BOOTRST $00C00} {Reset Junp to $00C00}
{ $NOSHADOW
{ $W+ Varni ngs} {War ni ngs of f}

Devi ce = nega8, VCC=5;
| nport SysTick, LCDport, MatrixPort;

From System | nport ;

2.38 — Tutorial E-LAB Computers



AVRco Tools

=R E]

Defi ne
Procd ock = 8000000; {Hertz}
SysTi ck = 10; {nsec}
StackSi ze = $0064, i Data;
FrameSi ze = $0064, i Dat a;
LCDpor t = PortD;
LCDt ype = 44780;
LCDr ows = 2; {rows}
LCDcol ums = 16; {col ums per |ine}
Matri xRow = PortC, O; {use PortC, start with bitO0}
Mat ri xCol = PinC, 4; {use PinC, start with bit4}
Matri xType = 4, 2; {4 Rows at PortC, 2 Colums at PinC
| npl enent ati on
{ $| DATA}
(oo }
{ Type Declarations }
type
t _KeySet = BitSet of Keys;
(o }
{ Const Declarations }
const
text : array [1..2,0..5] of string[16] =
¢ i
' E-LAB AVRco ',
'Pascal Conpiler',
' Tut ori al ",
"1st  Application'
(I ]

" the 2nd Line

992 Line 1 272 ')

could contain
sonet hi ng ",

defined by you ',
' ??? Line 2 ??? '));

______________________________________________________________ }
{ Var Declarations }
{ $| DATA}
var
11, 12, I1la, |2a . Byte;
key . t_KeySet;
Bkey [ @ey] . Byte;
______________________________________________________________ }

{ functions }

E-LAB Computers Tutorial - 2.39



AVRco Tools

=R E]

{ Main Program}
{ $| DATA}

begin

Enabl el nt s;
| oop

key := ReadKeyBoar d;
Bkey := Bkey AND $AA; {1st line}

case bkey of

$80: 11 :=1;

$20! 1 :=2;

$O8! 1 :=3;

$02! 1 := 4

$OO! 1 :=0;

eIsL 1 :=5; {>1 key}
endcase;

key := ReadKeyBoar d;
Bkey := Bkey AND $55; {2nd line}
case Bkey of
$40: 12 := 1;
|
$10: 12 := 2;
|
$04: 12 := 3;
|
$01: 12 := 4;
|
$00: 12 := 0;
|
else |2 :=5; {>1 key}
endcase;

if 11 <>11a {new text ?}
t hen

l1la :=1|1;

LCDxy(0, 0) ;

wite (LCDout, Text[1,11]);
endi f;

if 12 <> 12a {new text ?}
t hen

[2a :=12;

LCDxy(0, 1);

wite (LCDout, Text[2,12]);
endi f;

endl oop;
end TutorO01.

2.40 — Tutorial

E-LAB Computers



2.10.3 The Mega8 Konfiguration Bytes

AVRco Tools

(default is internal oscillator at 1 MHz)

E-LAB Computers

Mega 8

default

\

I
o
<
T
N

Bit Name

binary value
P/U
(Un/Programmed)

binary value

P/U

(Un/Programmed)

BootlLock12

BootLock11l

BootLock02

BootlLock01

Lock2

Lockl

B o
cCl|C|ICcC|ICcCI|IC|C

B o

CcC|C|ICI|IC|Cc|C

RSTDISBL

WDTON

SPIEN

CKOPT

EESAVE

BOOTSZ1

BOOTSZ0

BOOTRST

rlololkllok |-
cClo|jo|IC|Cc|o|C|C

[l (X (el | (el (el ol |

cClo|o|C|o|T|Cc|C

BODLEVEL

BODEN

SuUT1

SUTO

CKSEL3

CKSEL?2

CKSEL1

CKSELO

[l (o) (@ (@} ol |l ol
Clo|o|o|Oo|IC|IC|C

[ (N SN N SN N

cClICICICICICIC|C

=R E]

Tutorial - 2.41



AVRco Tools

=R E]

2.42 — Tutorial E-LAB Computers



AVRco Tools

=R E]

3 Editor PED32

3.1 Overview

3.1.1 Introduction

PED32 is a so called IDE (Integrated Development Environment).

PED32 (Programmers Editor for WIN32) serves as a platform for several Compiler, Assembler and
Debugger.

PED32 contains a comfortable Project-Administration rarely to find.
PED32 contains a Multi-Window Editor (MDI) comparable with that from Borland Delphi.
PED32 with correct settings, displays all errors found by the Compiler, Assembler and Linker.

PED32 in case of error the file is loaded, the cursor is positioned to the erroneous position, the line is
highlighted

PED32 uses an error list which can be scrolled and clicked by the mouse to highlight the corresponding line
PED32 samples project dependant the time used to build and finish the application.

PED32 has practically unlimited file size.

PED32 recognizes the files changed by the Compiler etc. and reloads them.

PED32 font sizes colors etc can be freely defined by the user.

PED32 has a configurable Syntax-Highlight.

PED32 supports syntax and context sensitive Help-Files.

PED32 supports Syntax-Highlight in font attributes and color

PED32 is widely configurable and therefore adaptable to many tools.

PED32 all this features together build a tool which is competitive to many others and mostly better

E-LAB Computers Editor - 3.1



AVRco Tools

=R E]

3.2 Projects

In opposite to many other IDEs and editors PED32 project-related and less file-related. That means, primarily
it is worked with a project, not with seperate files.

A project contains several source-files, e.g. the MainFile, the ProjektPfad, the used programming-time as
well as a project-related control-file, the socalled Control.

For a creation of a new project by the menu item Project/Edit Project and the dialog Project Admin or the
corresponding SpeedButton an appropriate control instruction must be specified in addition to project-specific
definitions like project name, MainFile, project path etc.. The dialog offers a selection of the existing controls.

If all specifications are correct and complete, so, if not existing, in case of Control=PICpas a MainFile is
automatically created, which can be used as a template. With the AVR here the Application Wizard is called,
which helps for the creation of the program template.

Normally further definitions are not required, because the used control contains all further instructions for the
IDE.

3.3 Controls

The control instruction Control is essential to work with a project, see above projects. In the main Control is
a batch description.

If the control is created correctly and completely by the menu item System/System Admin or the dialog
System Admin, normally it must not be changed any more.

Almost every point or line in this dialog has an according button in the upper button bar, the socalled
SpeedButton. The make-line and the simulator/debugger can also be called by CTRL + F9 or F9.

Every line consists of instructions, normally EXE-files, which are processed from left to right.
Further it is possible that there are numbers in a line, seperated by a seperator-character ,|* from the text
and other numbers. So other lines are included within the dialog. Pay attention to recursions!!

Example: The control PICpas is a control instruction for the E-LAB Pascal Compiler for the MicroChip PIC
processor family. For all projects, which are created with PICs and the Pascal Compiler, only the Control
PICpas must be specified for the project creation, and it is possible to edit, compile, debug etc. immediatly.

Here it must be said that the creation of a new control must be considered carefully. Besides there must be
an intensive deal with the according dialogs. The later resulting automation needs some preparatory work.

3.4 Syntax

The syntax definition (mind you compiler-language) normally is related to a certain control, and so it can be
found in a sub-dialog of System Admin. Under some circumstances it makes sense to have several Pascal
Jlanguages", for example for several different Pascal compilers. These must be created seperatly and
included in the respective control under syntax.

This creation of a respective language-syntax list is not a must. It only serves to emphasize certain syntax
elements within the editor.

3.2 — Editor E-LAB Computers



3.5 Menu

AVRco Tools

=R E]

Overview of the menu-items of PED32

3.5.1 File Menu

New

Open

Open Mainfile
Open Mapfile
Save

Save As
Close File
History

Ctrl +S

Insert File

Save Block

Print

Exit Alt + F4

3.5.2 Edit Menu

Undo Ctrl +Z
Redo

Cut Ctrl + X
Copy Ctrl +C
Paste Ctrl +V
Delete

Select All

3.5.3 Search Menu

Find Ctrl + F
Replace Ctrl + R
Find Next F3
Replace Tabs by Softtabs
Replace Tabs by Spaces
Goto Line F4

Clear all Markers

3.5.4 Project Menu
Load Project
Edit Project

Project Information
Project Options

3.5.5 System Menu

System Options
System Admin

E-LAB Computers

Open a new file.

Calls the file-open dialog.

Opens the MainFile of the project

Opens the MapFile of the project

Stores the actual editor window into the corresponding file.
Stores the actual editor window with a new name

Closes the actual editor window with possible file security
Shows the last 10 workked projects in time series.

By clicking on the chosed project is loaded.

Reads a file at the actual caret position.

Writes the highlighted block as a file.

Prints the actual file (window) or block.

Close PED32.

Undo the last change (Undo)

Shift + Ctrl + Z Undo the last undo (Redo)

Cut out a highlighted block and copy it into the notebook
Copy highlighted block into the notebook

Copy notebbok to the caret position

Delete symbol right of the caret or the whole block

Mark the block from begin to the end of the file

Search a word (at the caret)

Search a word (at the caret) and replace it
Repeat last search/replace

Replace hard tabs with softtabs

Replace hard tabs with spaces

Set caret to the line number x

Sets all markers back

Opens dialog to load a project

Opens dialog to create a new or change an existing project

Displays the actual state of the project

Edit compiler switches for Conditional Compile and Project Unit Paths

Opens a dialog to hide the compiler-window and define System Unit Paths
Special definitions of the controls (control-instructions for div. Compilers)

Editor - 3.3



=R E]

3.5.6 IDE Menu

General Options

Tabs

Popup delay

Edit Keyboard Macros

3.5.7 Window Menu

Arrange Icons
Minimize all
Window ...

3.5.8 Info Menu

Help IDE Ctrl + F1
Help Syntax F1

Info IDE

Info Syntax

About

3.6 Dialogs

AVRco Tools

Opens the dialog for the font- and color definition
Define the TABs

Delay of the syntax fasthelp

Opens dialog to edit Keyboard Macros

New order of editor windows, decreased to icons
Decrease all editor windows to icon size
Do a certain editor window in the foreground

Call the IDE or editor help in the context

Call the compiler or syntax help in the context
Call the overview of the the IDE or editor help
Call the overview of the compiler or syntax help
Display of the actual version of PED32

Overview of the Dialogs of PED32

3.6.1 Project Admin

Serves to load or change an existing project, as well as to create a new project. Display of the used time of

the seperate projects.
Subordinate dialogs:
Project Path

Main File

3.6.2 Project Options

Serves to define the path of the chosed project

Serves for the sdlection of the Main Files .

Compiler switches for the conditional compile can be defined here. These are passed to the compiler, which
treats them like a {$DEFINE Label}. Also project dependant unitpaths are defined here.

3.6.3 Project Info

Display of the state of the actual project, as well as general datas like RAM and ROM consumption and

allocation. Position and size of stacks and frames.

3.6.4 General Options

Serves to define the font/character size, as well as the colors for the normal text and ist background,
highlighted text and background, error text and ist background and comments and strings. Also the general
behaviour of the editor and IDE (Indent, Backup, Fasthelp) are defined here.

3.4 — Editor E-LAB Computers



AVRco Tools

=R E]

3.6.5 Macro Editor

Serves to create keyboard macros. So complete code-blocks can be created and edited. These blocks are
inserted into the current text by hotkeys.

3.6.6 Character Table

Serves to insert special characters into the source text. In addition it is able to establish the hex- or decimal
value of a character.

3.6.7 System Admin
Serves to create the controls for the seperate tools, for example compiler, assembler etc. Further the syntax
of the used languages is described, which is required for the syntax-highlighting of the editor. The error
evaluation of the tools must also be declarated.
Subordinate dialogs:

Syntax + FileM asks Serves to chose the language, e.g. Pascal, the limiter for comments, aswell asthe

filemasks, e.g. *.PAS, *.ASM
Error Definitions Declaration of the error filesand their internal structure

Help File Name and path of the compiler rdlated Help File

3.6.8 File Open
Seves to chose and load the desired files inclusive their path

3.6.9 File Save As
Seves to store the actual file with a name and/or path

3.6.10 Print
Serves to chose a printer, ist definition and print of the actual editor file.

3.6.11 Find
Serves to define the search options and search start

3.6.12 Replace
Serves to define the search/replace options and search/replace start.

3.6.13 Goto Line
Positions the caret to the specified line.

3.6.14 TabSize
Defines the length of the tabulator.

E-LAB Computers Editor - 3.5



=R E]

AVRco Tools

3.7 SpeedButtons

ﬁEiIe Edit Search Project Sestern IDE “Window  [nfo

=8 %

T e p R S| HERE B

§ || R P\ cslai ] |0 | B

Overview of the Speedbuttons of PED32

3.7.1 FileOpen

3.7.7

Ie

3.7.8

3.7.9
oy

Save

Ctrl +S

Calls the file-open dialog.

Stores the actual editor-window into the corresponding file

Project administration

Opens the project dialog

Application Wizard

Starts the program generator

Printer Dialog

Cut

Ctrl + X

Copy

Ctrl +C
Paste
Ctrl +V
Find

Ctrl + F

3.7.10 Replace

B

Ctrl + R

3.7.11 Undo

2

Ctrl +Z

3.6 — Editor

Opens the printer dialog

Cuts out a highlighted block and copies it into the notebook

Copies the highlighted block into the notebook

Copies the content of the notebook to the caret position

Opens the search dialog

Opens the search/replace dialog

Undo the last text change

E-LAB Computers



AVRco Tools

e-la
3.7.12 Tile horizontal
Devides the existing PED32 window even into the opened editors. The windows are
one below the other.
3.7.13Tile vertical
@ Devides the existing PED32 window even into the opened editors. The windows are
side by side.
3.7.14 Cascade
The opened editors are located descending in a row
3.7.15 Split Window
e
B The actual editor window is devided into two wondows. Both windows contain the

same file, but there are different positions within the file.
So it is possible to edit at two different positions in the file at the same time. It is very
helpful for some operations!

3.7.16 Calculator

— opens the calculator

3.7.17 Project Info
g

3.7.18 Alphabet

Displays the state of the project

fe Opens the alphabet dialog

3.7.19 Make

Ctrl + F9 The command-line, which is in the defined control in the make-line is processed.
Then eventual errors are evaluated.

3.7.20 Compile

7 The command-line, which is in the defined control in the compile-line is processed.
Then eventual errors are evaluated.

3.7.21Link

r‘: The command-line, which is in the defined control in the link-line is processed.

Then eventual errors are evaluated.

E-LAB Computers Editor - 3.7



AVRco Tools

=R E]

3.7.22 Post Processor

The command-line, which is in the defined control in the PostProc-line is processed.
Then eventual errors are evaluated.

3.7.23 Debugger

* The command-line, which is in the defined control in the debugger-line is processed.
Then eventual errors are evaluated.

3.7.24 Simulator
Y

F9 The command-line, which is in the defined control in the simulator-line is processed.
Then eventual errors are evaluated.

3.7.25 Assembler

A . C . . L
:l The command-line, which is in the defined control in the assembler-line is
processed. Then eventual errors are evaluated.

3.7.26 RomSim/Prommer

% The command-line, which is in the defined control in the RomSim-line is processed.
No error evaluation.

3.7.27 Tool
El At the moment it has no function

3.7.28 Librarian
LIB

The command-line, which is in the defined control in the library-line is processed.
Then eventual errors are evaluated.

3.7.29 DisAssembler
oIS

The command-line, which is in the defined control in the DisAsm-line is processed.
No error evaluation.

3.8 State Bar

| z3md [Modified | Total 537 | Top:238 | Byvtes: 13974 | Insen Errors: 0 ‘
Cursor Pos text total upper most file size Insert or number of
line changed linecount line in the overwrite last
column window mode occured
errors

3.8 — Editor E-LAB Computers



AVRco Tools

=R E]

3.9 Error window

Error: Tndefined Identifier 3ERINF1

expected

2] Error: Identifier expected ;I

If there are errors or warnings enabled in a compiler, so an error-window is opened at the bottom of the
editor. It contains all errors and possible warnings with an explanation. The editor scrolls to the according
position in the source by a doubleclick on one of these lines.

TITH L

until R

The faulty lines are marked with the corresponding color in the source, at the left there
are the error-numbers. A click on this number scrolls the error-window at the bottom, so
0} Read (52| that the according error and its explanation get visible. This line additionally gets a
a ExCheck| HighLight.
RxCheck| If this source is essentially changed or deleted, the error highlight and the number in the
if ExCh| source will be deleted.

3.10HotKeys and ShortCuts = Keyboard commands

3.10.1IDE and Syntax Help

Ctrl + F1
F1

Call help of the IDE. Help is depending on the actual dialog or call Focus
Syntax-Help. Help is depending on the word below the caret.

3.10.2 File and window operations

Ctrl +S
Ctrl + TAB

3.10.3 Move caret

€«

>

At

v

Ctrl + €

Ctrl + =
HOME

END

PageUp
PageDown
Ctrl + PageUp
Ctrl + PageDown
Ctrl + HOME
Ctrl + END

F4

Ctrl +n

Shift + Ctrl + n

3.10.4 Edit

Insert
Delete
BackSpace
Ctrl + Enter

E-LAB Computers

Stores the actual editor window
Switch over to the next editor window

Caret 1 character to left

Caret 1 character to right

Caret 1 line up

Caret 1 line down

Caret 1 word to left

Caret 1 word to right

Caret to begin of the line

Caret to end of the line

1 screenpage in direction to begin of file
1 screenpage in direction to end of file
Caret to the actual screen page begin
Caret to the actual screen page end
Caret to begin of file

Caret to end of file

Set caret to line number x

Jump to the marker “n“ (0..9)

Set marker “n“ (0..9)

Insert/overwrite on/off

Delete character right of the caret or the whole block
Delete character left of thecaret or the whole block
Insert empty line at caret position

Editor - 3.9



AVRco Tools

e-lal
Ctrl + N Insert empty line at caret position
Ctrl +Y Delete line completely at caret position
Ctrl+T Delete word completely right of the caret position
Ctrl + P Insert control character at caret position
Ctrl +Z Undo last change
Alt + BackSpace Undo last change
Shift + Ctrl + Z Undo last undo

3.10.5 Search/replace

Ctrl +F Search word (at caret position)
Ctrl + R Search word (at caret position) and replace it
F3 Repeat search or replace

3.10.6 Caret block commands

Shift + € caret 1 character to left with blockextension/abridgement

Shift + =2 caret 1 character to right with blockextension/abridgement

Shift + AN caret 1 line up with blockextension/abridgement

Shift + ¥ caret 1 line down with blockextension/abridgement

Shift + Ctrl + € caret 1 word to left with blockextension/abridgement

Shift + Ctrl + =2 caret 1 word to right with blockextension/abridgement

Shift + HOME caret to begin of line with blockextension/abridgement

Shift + END caret to end of line with blockextension/abridgement

Shift + PageUp 1 screenpage in direction to begin of file with blockextension/abridgement
Shift + PageDown 1 screenpage in direction to begin of file with blockextension/abridgement
Shift + Ctrl + PageUp caret to the actual screenpage Anfang with blockextension/abridgement
Shift + Ctrl + PageDown caret to the actual screenpage Ende with blockextension/abridgement
Shift + Ctrl + HOME  caret to begin of file with blockextension/abridgement

Shift + Ctrl + END caret to begin of file with blockextension/abridgement

3.10.7 Edit block

Shift + Delete Cut out block, copy of the block into Windows-notebook
Ctrl + X Cut out block, copy of the block into Windows-notebook
Ctrl + Insert Copy block into Windows-notebook. Block unchanged.
Ctrl +C Copy block into Windows-notebook. Block unchanged.
Shift + Insert Copy block out of Windows-notebook to caret position.
Ctrl +V Copy block out of Windows-notebook to caret position.
Shift + Ctrl + | Shift block to right

Shift + Ctrl +U Shift block to left.

3.10.8 Diverse

Ctrl + F9 Start Make Tool . Start Compiler, Assembler (Linker)
F9 Simulator/Debugger

3.10.9Keyboard Macros

With the dialog Edit Keyboard Macros the user is able to create textblocks, e.g. program sequences, which
can be inserted to a according ShortCut or HotKey at the cursor position in the text.

3.10 — Editor E-LAB Computers



AVRco Tools

=R E]

3.11Projects

3.11.1 Working with projects

In opposite to many other IDEs and editors PED32 project-related and less file-related. That means, primarily
it is worked with a project, not with seperate files. The IDE knows a project, if it is created once until it is
deleted. The programmer must not maintain directories or according tools. Load the project and work.

A link from e.g. Pascal-files with PED32 is not necessary and does not make sense. Only a link from PED32
with *.ppro files makes sense.

A project contains several source-files, e.g. the MainFile, the ProjektPfad, the used programming-time as
well as a project-related control-file, the socalled Control.

For a creation of a new project by the menu item Project/Edit Project and the dialog Project Admin or the
corresponding SpeedButton an appropriate control instruction must be specified in addition to project-specific
definitionss like project name, MainFile, project path etc.. The dialog offers a selection of the existing
controls.

If all specifications are correct and complete, so, if not existing, a MainFile is automatically created, which
can be used as a template. The template is a normal text-file. For creation of the respective Control the
name and the path of ththis template must be registered. If an application wizzard program generator) is
specified in the control, so the template is started instead of the program generator.

Normally further definitions are not required, because the used control contains all further instructions for the
IDE.

Like already mentioned, the IDE PED32 stores the files of all projects. A call of an existing project is limited
on two clicks in future. It is possible to process seperate files, but the actual intention is the file processing
within a project.

After a certain adaption time from a normal editor to projects the user learns fast to cherish the advantages.

So the low additional expenditure for the creation of a project parameter is well-accepted.

E-LAB Computers Editor - 3.11



AVRco Tools

=R E]

3.11.1.1 Load Project

To load an existing project the dialog Project Admin must be opened. This can be made by the menu-item

i
Project .. Load Project or by the SpeedButton . So the following dialog is opened. The dialog page
Project load/delete is selected by a click on the respective tab.

r.] Project Administration

With a doubleclick on the chosed entry or

New - Edit -Account Broject ioad/delste | a click on load button the selected project
is loaded.

ADCtest AVR megatest

AppWizz Test ProgBaox A further possibility is in the file-menu with
ALGEBTE TS USRS the menu-item History. Here a list of the
SRR el last processed projects in order of time is
AVR lestz seut diplayed. Also load a chosed project with a
AvRtest scu485 click

AvRtest SCU-B :

DCU4 STF70 .

DCL-T STFFO-4 Obsolete projects are deleted by the
EBM40 YFC Delete button.

Floats AWR ) ]

12C AVR The projects assigned to the seperate
Kahohiat controls (compiler) are displayed on
AVRpas [FICpas | ThSpas | ZBpas | seperate pages.

+1 Delete 3 Load X Exit | || After the selection of the chosed project all
4' 4' 4' project-relevant files are loaded out of the

file PED32.ini. These files contain a.o. the
home directory of the project and the used control.

PED32 now switches the Current Directory in windows to this directory. All further file operations within the
IDE which are made without path specification, now are in this directory.

Next the IDE loads the project control file xxx.ppro. This file now contains all further project files as well as
e.g. the last opened files.

Now the according control is loaded and next the last opened files. At last is checked, if an error-file is
existing. If this is the case, it is opened and evaluated. So the loading process is finished and it can be
worked.

Starting or loading by DragAndDrop does not make sense and is not provided.

A link from *.ppro files to PED32 is possible. If this link is made once, it is possible to start the IDE PED32 at
any time within the explorer or similar programs by a doubleclick on a file with the format xxx.ppro. This now
is loading the clicked project.

A doublestart of PED32 is not possible, because both programs must maintain the same INI-files in
competition. Sure there will be strange results.

The editor in PED32 watches all loaded files. If a loaded file is changed from outer side, for example by an
editor, the IDE gives the information that the file has been changed, and the inquiry, if it should be loaded
again. The re-load is automtically, if for example the compiler generates a changed assembler source.

3.12 — Editor E-LAB Computers



AVRco Tools

=R E]

3.11.1.2 Edit/New Project

To change an existing project or to create a new one, the dialog Project Admin must be opened. This can

i
be made by the menu-item Project .. Edit Project or by the SpeedButton . Then the following dialog is
opened. The dialog page New-Edit-Account is selected by a click on the respective tab.

F3 Project Administration 7 If a new project should_ be created, the
Mew - Edit -Accaunt o | New button must t_Je clicked. The further
procedure is identic for New and Edit.

Name  [EEN40 o
In the edit window Name the chosed

Directory |C\PROJEKTE\EBMAMSA _| project name is registered. This name is

. also used as project filename. But it can
MainFile [EBM40.pas contain all characters, which are allowed

Control  [~+Rpas = in WINO5 etc, e.g. space.
current account  total By an edit of the window Directory the
| 1D6A3h | 000K working directory is specified.

A doubleclick on this window or the next
first I 0.05.98 17-14-07 . _bL_Jtton opens the dialog Pro_Je_ct Pa_th. So
ACCesS G Mew it is possible to chose an existing directory

as working directory.
last I 26.09.93 12:57:42 Y Save g ry

By an edit of the window MainFile the
X Exit main-file is specified.

EEE

Another possibility to open the dialog MainFile is a doubleclick on this window or a click on the next button.
So an already existing file in the working directory is declared to a MainFile.

If the registered MainFile is not existing, so, if specified in the chosed control, a template-file with the name
MainFile is copied into working directory, if there is no program generator provided.

The window Control displays the actual chosed control. By a click on the right arrow-button of this window
the actual known controls are offered for selection. The desired control is selected by a click. A new control,
if necessary, first must be created by the menu System|System Admin and the dialog SysAdmin. If a
control, for example PICc032, is created once, it can always be used for all projects with the Pascal-compiler
in future.

Seperated by a frame, the time-relevant project files are displayed left at the bottom. These are access files,
devided in project creation (first access) and last call (last access).

Above the used process times are displayed. Total account indicates the last accounted time effort. Current
account indicates the current time after the last account. The sum of both times is the actual used time for
the project.

If there is an intermediate account, you must click the Update button. Now current account is added with the
total account and current account is set to zero. Total account now contains the absolute time.

The times can be reset by Clear. So the access files are set to the actual date and time of day. S the project
is quasi started new.

All changes must be confirmed and saved with Save. If this is not made, so if the dialog should be closed, it
is inquired if a save of the change is desired. If the inquiry is negated, the changes get invalid.

E-LAB Computers Editor - 3.13



AVRco Tools

=R E]

3.11.1.3 Project Path

Sub-dialog of the dialog Edit/New

E."!Fmiect Path Project .
‘PmJ: EBMAd E-LAB For a new creation or an edit of a
|EI G : Cumputers project, a home- or working-directory
: File contents must be assigned to the project. By a
(=L [ EBM40pas doubleclick in the dialog Edit/New
(= PROJEKTE Project on the edit field Directory or
(= EBM4D dthe right button the dialog Project
IR Path is opened.

Here it is possible to declare an
existing directory to a working directory
of the chosed project. The right half
contains the relevant files of this
directory for information. For selection
pay attention that desired path appears
completely at the bottom in the field. It
is able to edit this field, too. If the
changed path is not existing, it is
inquired, if the directory should be
created new.

C:APROJEKTENEBMADNSW x Cancel |

3.11.1.4 MainFile

Sub-dialog of the dialog Edit/New Project .

For a new creation or edit of a project a mainfile must be
assigned to the project. For a new creation of a project the
desired filename typed in the edit field Main File in the dialog
Edit/New Project.

{li EBMA0 pas

If the file is already existing, the dialog Main File can be
opened by a doubleclick on the field or a click on the button.

Here an existing file can be declared to the MainFile of the
chosed project. If no corresponding file is existing, so the
name of the new mainfile must be typed in the bottom field.
To be compatible with other tools, the name should

v _OK correspond to the DOS conventions.

|EBM40.pas If a project is created once with the above mentioned dialogs,
' it can be called at any time.
Hew Main-File

In the working directory of the project there is created and maintained automatically a project control file. This
file contains all project-related files. The filename of this file is "ProjektName.ppro". The structure is
corresponding to a windows-ini-file and so it is a normal textfile. This textfile should only be changed in case
of reperatures.

At the end of the total procedure (new creation or edit of a project) the IDE checks, if the typed project
mainfile is existing. If this is not the case, so itis checked in the assigned control, of an application wizzard or
a template has been specified and there is a corresponding procedure.

3.14 — Editor E-LAB Computers



AVRco Tools

=R E]

3.11.1.5 Application Wizard

If an Application Wizard is defined in the according control, it is called, if there is no mainfile existing in a new
project. So itis possible to create comfortably a new application.

FE-LAB Application Wizzard [AVR] [9058515] Example for an
application expert

Save new application i .
‘ﬂl e PP 4|”'”{t AppWizz for E-LAB

~Application basics —Peripheral driver————  “Application— AVReo
|CPU 9058515 | ||SerPort 1920084 e

Ext Ram: 0| | SerPor2 none IEE”"MD

\Clock:  6000000Hz | || Piffhport none File Name

| SysTick 10msec|| || PitiMpor2 none |EEIru14IZI.pas
\MultiTask: MultiTask | ||ADCpaort none

| SysStack: 320 || SwitchPort Pind ‘BB Build Application!
| SysFrame 16 | | | SwitchPorZz  none

TaskStack 32| | [12Cpon hane cob show| By print |
| TaskFrame 16/ | |LCDport none

| Stackcheck false| ||DispTs PonB

stare | j-'L et

| |page Bofd

3.11.1.6 Template

If there is no wizzard existing, but a template-file, so it is copied into the working directory with the name
MainFile. The template-file can be any textfile with any content.

3.11.1.7 Project Options

FA Project Options [ProgBox] | E-LAB Compiler of the serie Pascal-scm know the
S socalled Conditional Compile (see also Compiler
—actual conditional compils databook). Such $DEFINE instructions can be

j created, edited and made valid with this dialog. The
dialog contains all Defines, which were created for this

project.
& Delete | $DEFINE 10000 o Add

A new define is typed in the edit-field. Several values,
_ which are valid at the same time must be devided with
~Search path far Unit a semicolon. If the line is complete, it must be added

[C\PROJEKTE\PASCAL=1\AVR\PROG\S W, 7] | by the add-button. ,
A list of all defines you can get by a click on the arrow

button. By a further click on an arrow of the opened
M o 4dd window an existing line is chosed. With the ok-button

this definition is allocated to all further compile runs.
X Cancel | W 0K PED32 inserts this line into the xxx.ppro file, where it

is processed by the compiler. The compiler interprets
the seperate instructions of this line as if is in the source code. Out of the line Test; Sample you get >

{ $DEFI NE Test}

{ $DEFI NE Sanpl e}

Project related Unit Search Paths can be defined in the lower edit field. All defined paths in the list are
passed to the Compiler via the ,xxx.ppro“ file. The Compiler must be able to interpret this lines.

E-LAB Computers Editor - 3.15



AVRco Tools

=R E]

3.11.1.8 System Options

3 System Paths [AVRpas] x]| Visibility .
S In case of a compiler or assembler run the check
—isibility boxes define wether the tools are visible or not. If

visible a window is opened and the processed lines
are counted. This wastes time and the tools slow
down.

[T show Assembler

—Search path for Linits

Search path for Units
|C:1PRO.JEKTE1PASCAL~1 ARl j _| The search path for units are defined here and are
passed to the compiler. All paths are relevant in the

& Delete | M Add | entire system. That means this type of paths are not

project dependant but always in use.
X cancel | & OKBtn

3.11.1.9 Project Information

3 Project Information [EBM40] | All relevant parameters of a project can be
- displayed and analysed by this dialog. So it is an

~CPU ~EEprom exception that the long winded analysis of the
CPU Mame 9055515 total 00000k . .a01FFh assembler ||St|ng is necessary.
CPU Clock 8MHz User 00000k, 00003k
With the button RAM map you get additional
~ROM - Eaternal RAM information about the exact memory usage.
bt 00000k..01FFFh total -

Code 00000k, .01FBSh System  oo—-—-
end acdr 000000, 0001 AR Uzer -

Rev 1.5

—Register file —STACK
total o004k, .0000FH Stack 001 64h. 001 S4h
System 00004k, Q0009k Frame end 001 C2k
=ser 0000.AR. O000F b Frame iz in internal Ram
—Imternal RAM —State
tatal 00060h. O025Fk Errors: 1]
System 000E0h. 00099k Source Lines: 497
L=zer 0o09Ah. 001 C2h compiled
—Compiler —hz=zembler

Rew 1.2

R map |

3.16 — Editor

E-LAB Computers



AVRco Tools

=R E]

3.12Controls

3.12.1 What is a control?

The control instruction Control is essential to work with a project, see above projects. In the main Control is
a batch description.

If the control is created correctly and completely by the menu item System/System Admin or the dialog
System Admin, normally it must not be changed any more.

Almost every point or line in this dialog has an according button in the upper button bar, the socalled
SpeedButton. The make-line and the simulator/debugger can also be called by CTRL + F9 or F9.

Every line consists of instructions, normally EXE-files, which are processed from left to right.

Further it is possible that there are numbers in a line, seperated by a seperator-character ,|* from the text
and other numbers. So other lines are included within the dialog. Pay attention to recursions!!

Example: The control PICpas is a control instruction for the E-LAB Pascal Compiler for the MicroChip PIC
processor family. For all projects, which are created with PICs and the Pascal Compiler, only the Control
PICpas must be specified for the project creation, and it is possible to edit, compile, debug etc. immediatly.

This instruction (Control) is in the home directory of PED32 and has the name PED32.ini, all other already
defined controls can also be found in this file. This file is structured like a standard windows ini-file and so it
is a textfile. This file should only be changed in case of reperatures. PED32 maintains this file automatically.

Here it must be said that the creation of a new control must be considered carefully. Besides there must be
an intensive deal with the according dialogs. The later resulting automation needs some preparatory work.

The seperate items of a control normally are socalled batch-instructions, which are executed, if the
respective SpeedButton is clicked. If, for example the SpeedButton Link is clicked, the line linker of the
control is processed. But it is not omplicitly necessary to call a linker, there can also be any operations,
depending on the entry of this control.

Except the fixed link between the seperate SpeedButtons and the control entries there is no further link, that
means every control entry can be defined freely.

But some of the instructions (Make, Compiler, Linker, Assembler and Librarian) do an error check after their
execution. Therefor it is searched for the errorfile within the working directory, its name and structure is also
in the respective control.

Because a control knows only one errorfile and one structure, the called tools in this control all must have
the same error file name and protocols, otherwise errors can not be evaluated.

The E-LAB Tools like for example PICco32 and PICasm32 fulfill this requirement.

E-LAB Computers Editor - 3.17



AVRco Tools

=R E]

3.12.2 Control Edit

To change an existing control or to create a new one the dialog System Admin must be opened. This is
made by the menu item System/System Admin. After that the following dialog is opened. The dialog page
Controls is chosed by a click on the respective tab.

If an existing control should

“ System Administration EE be deleted, so first it must be

Controls | Tl | Syntax | loaded by the load button and
Contral by a click on the select field.
ahitro
Now the loaded control can
[+
Control Select AMme be deleted by the delete
IAVRFJES j B Luadl e Newl +: Del | button.
E ||::Ipmjektelpaacal_scleLWch.exe %Fraj = gtgrel The creation of a new control
o3 is identic with edit an existing
g Cilitake |[27 e — control, expect that first a
g R T o o rojekietpascal scAVRVAYR o exe %Pro name must be specified.
v 2|3 Linker
=)0 FostProc _ _ This happens by a click on
[ 035 Simulstor| c:projektetpascal_schAtmeldyRdebug. exe %Mpi¥hb ohj the new-button. Now an
[T C|6Debug | cprojektetpascal_schSIMIASIMIZ exe %Mpl%Mb. pdpro inputfield opené above the
C1|7 &zm chprojektetpascal scAWRMNANRasm\AWRass exe SMpiSib. new-button. Here the name
o g SEiErifiZn of the new control must be
[ fioPrem_| CtPROJEKTEWPascal_scWvRIPROGDelphiaWRProg.exe | %pmegie';cethﬁ e o by a
Lanouane| Pascal pas i : -
ErrorFile_| %Mp\%Mb err click on the load-button.
HelpFile | C\PROJEKTEVPEDINPASCAL-SCM. HLP The new control now must be
Temglste | C\FROJERKTEVPEDSWAWRpas. trpl chosed out of the list Control
O appniz | CAPROJEKTEWPascal scW@WRMppYYizzardWAppWizz exe Select and must be loaded
MainFile YEhip = Pathiame oMb = Basehlame StMe = extension anly by the load-button. The futher
WorkFile %6Wp = PathMame %Wh = BazeMame 26WWe = extenszion only % . . .
o ) Save| X Exit| || procedure is equal to the edit
Projecifile %Prol | | of a control and is described

now.

Control Edit.

The control, which must be edited, is chosed out of the list Control Select and is loaded by the load-button.
All already processed items of this control are obvious in the items list. Every singular item (Batch line) can
be chosed by a click on the respective line.

The chosed term then appears in the edit-window above for further procedure. If here are changes, they
must be confirmed and strored with the Store button. The changes are visible in the list immediatly.

If the changes made in the editfield should be invalid, so the sore button may not be clicked, but the next
item in the list must be . So the changes are invalid.

The items 1..10 (Make..RomSim) are normal batch-lines, whixh can be changed with the edit field. They
have a respective SpeedButton. The items Syntax, ErrorFile, HelpFile, Template and AppWizz open an
additional dialog. These dialogs are described later.

Structure of a batch line.

A batch line (items 1..10) is able to use other batch lines as reference. The entry 2|Hallo.exe|7 means, that
first the item 2 (Compile), then the program Hallo and then the item 7 (Assemble) is processed.

3.18 — Editor E-LAB Computers



AVRco Tools

Further the MainFile, the ProjectFile, the working directory, as well as the actual Editor window can be
referenced. Therefor the placeholders %Mp, %Mb, %Me, %Proj, %Wp, %Wb and %We are determined.

=R E]

%Mp indicates the working register

%Mb indicates the filename of the MainFile without extension

%Me indicates the extension of the MainFiles (e.g. pas)

%Wp indicates the register of the actual editor window

%Proj indicates the path and filename of the project control files

%Whb indicates the filename of the actual editor window without extension
%We indicates the extension of the actual editor window (e.g. pas)
%Proj indicates the project (File) name, not the MainFile

An example for file reference:
Assuming that the working directory of the project is "C:\Projekte\Tests"and the mainfile is "MyProject.Pas",
the following entry is created:

c:\projekte\PICco32\PICco32.exe %Mp\%Mb.%Me

This batch line calls the program "PICco32.exe" and passes it in the commando-line
"0oMp\%Mb.%Me" as the following string:

"C:\Projekte\Tests\MyProject.Pas".

For div. lines at the left there is a CheckBox, which specifies, if , after the respective program call, the IDE
has to wait, until the called program is finished or if it can take over the control. (Exec and Wait) For some
simulators/emulators a complete reset after every compile procedure is long-winded, so the checkbox is
switched off, and e.g. the emulator always stays loaded after the first start.

If all items are typed crrectly and completely, the dialog has to be saved with the Save button. Here all
changes can be made invalid again by using the Exit button at the end, not the save button.

Attention:

Do not program a recursion!! A recursion would be, if in item1 the item2 would be called and in item2 item1.
Oriniteml item1 itself! The batch processor would execute alternate item1 and item2 without end or until a
system crash.

E-LAB Computers Editor - 3.19



=R E]

3.12.3 Syntax select

AVRco Tools

If the item ,syntax“is clicked in the the batch list for editing or creating a new control, the following sub-
dialog is displayed. It serves e.g. for selection of the desired high-level language (not compiler), of the file-
masks as well as of the comment limits within the source. The several item are linked with the ,Janguage®,
but they belong to the calling control, e.g. PICpas.

E’.![Jeﬁne Syntax and File Maszks

haski

|PA5EALM5H Source

Mask2 |List File
Mask3 [Text
Maskds  [Alle
Masks |

1. Comment Delim L I{_|123
2. Cormment Delim L I?II]BS

Fascalpas

Fileldask |*.pas:*src:™.

Fileldask |=1st

Filetdask I‘.txt

Filetdask |*=

Filetask I

1. Comment Delim R I}_|125
2. Comment Delim R IE_IZI]I]

Selected Syntax

IF"ascaI.pas

x Cancel |

3.12.4 Error File define

Upto 5 file masks can be defined,
which can be used by the IDE32
for the several file dialogs.

Every entry consists of a comment
field (left) and the mask (right).

The Comment Delimiters (limits)
on the left and right are used by
the editor for the comment
HighLight.

At the left bottom a selection of the
high-level languages (not
compiler), which are placed at
disposal, is displayed. By clicking
an item the ,Janguage"” is copied in
the field Selected Lanugage.

An essantial point of the software development with a compiler or assembler is the error-evaluation. Without
this feature you are put back to the stone age of software. But the essential aspect is that the evaluation after
a compile etc. loads the faulty file, positions the caret to the faulty position, and, if possible, it displays an

error text or description.

Presupposition is, that tools (compiler etc.) create an error file, which can be evaluated. The IDE must know
the structure of this file. Because of the the file and its structure must be specified in the dialog below (sub-

dialog of control edit).

u Error Definitions

Mame of ErrorFile

|xumxuh_en

Line number Delimiter
left right

I D

Ertartext Delimiter
left right

evaluated.

h: |

X cancel|

X Cancel

fulfill this requirement.

3.20 — Editor

| The name and the path of the expected file must be typed in
the edit field Name of ErrorFile. Here the placeholder, which
are described above in control edit, are also permitted.

The structure of the file is devided in a line into the declaration
of the line-number, limited by two delimiters, and the error-
description, also limited by two delimiter.

Because a control only knows one error file and so one

structure, the called tools in this control must all use the same
error file name and protocols, otherwise errors can not be

The E-LAB Tools like for example PICco32 and PICasm32

E-LAB Computers



AVRco Tools

=R E]

3.13 Syntax

Whose language

The syntax definition (mind you compiler-language) normally is related to a certain control, and so it can be
found in a sub-dialog of System Admin|Control Edit. Under some circumstances it makes sense to have
several Pascal ,languages”, for example for several different Pascal compilers. These must be created
seperatly and included in the respective control under syntax.

This creation of a respective language-syntax list is not a must. It only serves to emphasize certain syntax
elements within the editor.

3.13.1 Syntax edit

To change an existing

ﬂ Syztem Administration
= language-syntax or create

Controls | Tools Syntax a new one, the dialog
. System Admin must be
Syrtax File opened. This is made by
Syntax select MName Extension the menu-item
5 5 System/System Admin.
- B : g X
IF'asc:aI.pas J é Lnadl ¥ i New | *3 Dl | After that the following

dialog is opened. The
dialog page Syntax is

N U U Attrinte

selected by a click on the
= Marm respective tab.
Syntax Edit |elsit £ stoe| e gog
o hal If an existing_file_should
abs case dowinto At be deleted, first it must
addr char elz_if [T Case be loaded with the load-
and chr else button and a click in the
Elleh; close selection fiel. The loaded
ckli const end language can be deleted
sl 1S end_asm —— with the delete-button.
at CPUsleep end_case Edit
hegin dec end_for "= |l The creation of a new
EElE (g deﬂ_ne CLsELS i il Del language syntax is identic
E;eak gﬁwce gzg—ﬁﬁﬁe with the edit of an existing
e do endasm = Save ||| one, except that first a
name must be specified.
KN — »| X Exit

This happens with a click on the new-button. Now an inputlield is opening above the new-button. Here the
name of the new language must be typed. If the name is complete, this must be confirmed with a click on the
load-button.

E-LAB Computers Editor - 3.21



AVRco Tools

=R E]

The new language syntax now must be chosed out of the list Syntax Select and loaded with the load-
button. The further procedure corresponds to the edit of a language and is following described.

Edit language syntax.

The language, which must be edited, is chosed out of the list Syntax Select and loaded with the load-
button. All already existing syntax words are visible in the list. Every seperate word can be chosed by a
doubleclick on the respective entry or by a click on the edit-button.

The chosed term then appears in the edit-window above for further procedure. Here the term can be
changed. A change in the text does not create a change in the list, but a new term! A change of the text can
be reached with load, delete and new input of the term. With a click on the store-button it is checked, if the
new or changed term is already (identic) in the list. If this is the case, the old term stays existing and the text
attributes are taken over. If the term is not in the list, the complete text with its attributes is taken over.

So it is secured that new or changed terms create a new term in the list, even if they distinguish in only one
letter.

Attribute changes, made by the RadioButtons Norm, Bold, Italic as well as by the CheckBox Case do not
create a new term as well as the change of the font color, always providing there have been no changes in
the text itself.

The font attribute norm (normal), Bold and Italic exclude each other. Only one attribute is possible for one
term.

The CheckBox Case specifies, if the editor should pay attention to capitalization/small letters of this term. If
case is active, so the editor uses the defined font attribute and color only if the word found in the source text
is abolutely identic (capitalization/small letters) with the entry.

To every term a textcolor can be assigned. This happens by clicking on the respective color level.

All attribute changes are visible in the editfield immediatly. The list field also contain attributes, but it is not
possible to make them visible.

If there have been changes, so you must click on the store-button to store them. The text changes are
visible in the list immediatly.

If the changes made in the edit field should not be stored, do not click the store-button, but the next item of
the list must be selected. So the changes are invalid.

To store all changes (file NewSyntax.Ing) the process must be saved with save at the end or exit.

3.22 — Editor E-LAB Computers



AVRco Tools

e-la
3.14Editor Setup
3.14.1 Fonts, Colors, Backup and Fasthelp
With this dialog, calling with the menu-item IDE/General Options, the font color, the font size and the
common behaviour of the editor and IDE can be defined.
Auto indent Automatic indentation is select.
Create Backup before any file is stored, a backup of the existing file is made, that means the origin
file is renamed to xxx.BAK
Auto save before call and running a tool (Compiler etc) all open files will be saved
save Windowpos stores the positions and size of all open editors when a project is closed. If this
project is re-opened, the positions and sizes will be restored.
scroll Caret with scroll operations in an editor window, the caret is also scrolled/dragged. So it is
always in the visible area of the editor window.
show Hints sets all small hintwindows of buttons, editfields etc. visible.
show funcs at Mouse FastHelp windows (Syntax) are displayed at the mouse position
show funcs at Caret FastHelp windows (Syntax) are displayed at the caret position
E.':-'!.!Editur General Ophions
—operating option For all 5 possible text types a
: related text color can be
Auto indent W ALt Il Caret
[T Awta inden W Auto save [ zcmll Care ¥ funcs at Mouse selected.
[~ create Backup [ zave'Windowpo: [ show Hints [T funes at Caret
For 3 of the text types only the
r : respective background color is
ort aptian selectable.
T Text basics—
Normal Text Font eclor | Back eolor || e o i gize ||| The textsize for all is defined
by fontsize.

Highlight Text Fant calar | Back calar " 8pts

A click to the button default

0 9pts
S Fort color | Back colar rest_ores all font and color
& 10 pts settings to the default value.
(* Comment Text *) Fort calor 11 pte The ok button stores the
O selected font and color
'Scring Text!' Font colar default 12 pts attributes into PED'’s ini file.

E-LAB Computers Editor - 3.23



AVRco Tools

=R E]

3.14.2 Character table

This table serves to look for the ordinal- or hex values of characters. Further it is able to create a text line,
which can be copied into the notebook or into the editor.

E’.!PEDBE Character table [Courier new]

LI™|#|S($|&|[ ) |*(+]|-|-|F]|0|1]2|3|4|5|6|7|8|9 =7
@ABCDEFGHIJELMNOPQR UWVWXYZINT|N]
*abcdefghijklmnopgrstuvw=xyz{ | ~0
0|, [flal|-|T|F| [%||< @WOOOO|*|"|™|"|*|—|—|" =8| |ee|0|O|¥
T2 ¥ (8] @] |« ® 7 (223 (n|F] |20 et ]3]
AAAAAABRCREEEEIIIIPDANOOOO OO0 Y ED
A43448xgeé88111i1i8Ad06886xenuliypby
G decimal  hey Paste to editor Cnpytnclipbnardl £y clear

|14|:| |$Elc append > | [E 1 close

3.24 — Editor E-LAB Computers



AVRco Tools

3.14.3Keyboard Macros

E.!PEDBE M acro Editor [Pazcal]

% save all

47 stare item

select Hotkey

|strg + Umschalt + P

procedure xx; ﬂ
bedgin
end;

[~

kevs
Tmsch+3trg+P
Tmsch+3trg+F
Tsch+3trg+i
Tmsch+3trg+R
Tmsch+3trg+Llt+F
Tmwsch+Strg+ile+F
Tmsch+3trg+alc+T
Tmzch+3trg+E

WaCro ﬂ
procedure Xx;00kbegind000end:O0

1 boolean:00begind00der
while xx do0000endwhile ;00
repeatdd00until xx:00

function =xx

for .. doOO0OOendfor ;00

process .. (20, 32 ilata) ;00beginC
task .. ([(1iData) ;00beginfl00end;

if ... thenOOOOendif:

=l

=R E]

Keyboard Macros are
texts, which can be
inserted with socalled
Hot-Keys into the actual
text.

For this the macros must
be created with this
dialog. The call is made
by IDE/Edit Keyboard
Macros.

To create a new macro a
free field is clicked blue
with the mouse button.
The macro text now can
be typed into the upper
input field. With a click on
the field select HotKey
The caret is positioned on
this field. With the desired
key-combination the
hotkey is assigned, e.g.
L,Ctri+Shift+P* for
Procedure.

With Store Item thr edit field and the HotKey is stored in the table. The complete table is saved with save

all.

The edit of an existing entry is the same procedure.

Pay attention that the ALT-key does not function in case the main menu has a underlined letter.

For edit now the according text can be inserted at the position of the caret with the respective key function

(HotKey).

E-LAB Computers

Editor - 3.25



AVRco Tools

=R E]

3.15Menus

3.15.1 File Menu

|Eile Edit Search Project

Mew New Open a new file.
Open... Open Calls the the file-open dialog.
Open MainFile Open Mamflle Opens the MamF_lle of the project
Open MapFile Open Mapfile Opens the MapFile Qf the project _
Save Ctrl + S stores the actual editor window in the corr. file
s S8 Save As Stores the actual editor window with a new name
Save as... Close File Closes the actual editor window with possible file storage
LCloze File
Histor . History Displays the last 10 processed projects in order of time.
L By clicking the chosed project is loaded.
Inseit File Insert File Read a file at the actual caret position.
& ave Block Save Block  Write the highlighted block as a file.
Frint... Print Print the actual file (window) or block.
Exit  Alt + F4 Finish PED32.
Exit Alt+F4

3.15.1.1 History

The sub-menu History displays 10 processed projects in order of time. The last opened project is always at
first position. So an overview of the actual projects is possible. With a click on the respective entry it is
opened or loaded.

The further procedure is identic with above described Load Project.

3.15.1.2 Insert File

With the menu-item Insert File a dialog for file-selection is opened. If a file is selected, then it is copied to the
caret position in the actual editor window.

3.15.1.3 Save Block

With the menu-item Save Block a dialog for file-name input is opened. If a file name was typed, so the
highlighted block in the actual editor window is written into this file. An possible existing content of the file
gets lost.

3.26 — Editor E-LAB Computers



3.15.2 Edit Menu

|E|:|it Search  Project  System

Unda Strg+s

Bedo Urnzch+Shg+s
Cut Strg+

Copy Strg+C

Paste Strg+t

Delete Entf

Select &l

3.15.3 Search Menu

AVRco Tools

Undo

Redo Indo the last undo (Redo)

Cut

Copy
Paste

Undo the last change (Undo)

=R E]

Cut out thw maked block and copy it into the notebookk
Cpoy highlighted block into the notebook
Copy notebook to the caret position

Delete Delete symbol right of the caret or the whole block

Select All Mark block from begin upto the end of the file

Search Project  Swstern [DE Window
Find... Strg+F Find Ctrl + F
Replace... Strg+R Replace Ctrl +R
= Find Next F3
Find pest F3

Replace TABz by zofttabs
Replace TAB= by zpaces

Replace Tabs by SoftTabs
Replace Tabs by spaces

Goto line... Fa

Goto Line F4

clear all karkers

clear all Markers

Search word (at caret)
Search word (at caret) and replace it
Repeat last search/replace

Fill hard tabs with spaces
Replace hard tabs by spaces

Set caret to line number n
Delete all marker-buttons

3.15.4 Project Menu

Project Systermn |DE Window

Load Praject
Edit Project

Praoject Infarmations

Project optionz {DEFIME}

3.15.5 System Menu

Swstem  1DE  “Window
System Options

System Admin

E-LAB Computers

System Options

System Admin

Load Project
Edit Project

Opens the project dialog to load a project
Opens the project dialog to edit a project

Project Information
Project options

Opens the info dialog with the files of the project
Opens the project dialog to input conditional
compile switches.

Opens the System Options dialog. Show
Compile/Assemble and Project Unit Paths can be
selected or edited

Opens the system/control dialog

Editor - 3.27



AVRco Tools

=R E]

3.15.6 IDE Menu

IDE ‘Window |nfo

: — General Options Opens the editor option dialog
General optians == W Tabs Define of the TABs
Real tabs
Popup delay v Smart tabs PopUp delay determines the delay of the syntax help
Tab Size. Edit Keyboard MacrosOpens the keyboard macro dialog

Edit keyboard macros T

3.15.6.1 Tabs

For tabs it is distinguished between real Tabs and smart tabs. For real tabs generally a tab character is
inserted with the tab-key in the text. The item Auto Indentation here has no function. These tabs are
executed with the in the dialog TabSize specified length by the editor (pseudo spaces).

The Smart Tabs are leading to a different behaviour of the editor. For using the enter key at the end of line
anew line is inserted. The input caret jumps to the first visible letter of the line above, if Auto Indentation is
switched on. If this is not the case, the caret stays at the begin of the line. The TAB key has a double
function for Auto Indent. If it is pressed, the caret jumps to the next word begin of the line above. If there is
no word existing, the number of spaces, specified in TabSize, is filled.

Without Auto Indent always the number of "TAB Size" spaces are filled.

3.15.7 Window Menu

Window B[

Arrange Icons New order of editor windows decreased to icons
Arrange |cons LY . . . )
L Minimize all Decrease all editor windows to icon size
Minimize Al
v 1LCOtest pas Window ... Do a certain editor windoe in the foreground

3.15.8 Info Menu

Help IDE Skrg+F1
Help Syntax F1

Help IDE Call the IDE or editor help in the context
Help Syntax Call the compiler or syntax help in the context

Infa IDE Info IDE Call the overview of the the IDE or editor help

Info Synta Info Syntax  Call the overview of the compiler or syntax help

About... About Display of the actual version of PED32

The IDE PED32 contains two help systems. One refers to the IDE or the editor, the other refers to the
respective compiler or assembler.

Help can be switched on by the above menu or by the F1 key. Help for the compiler can be reached by F1
context-related, the IDE-help is reached by Ctrl + F1. In dialogs the IDE-help can be reached by F1 or the
help-button ?.

3.28 — Editor E-LAB Computers



AVRco Tools

=R E]

3.15.8.1 Help IDE

For every dialog and menu-items there is a help. In case of open dialogs you can get help by the F1 key or
Ctrl+F1 or by the help-button ?. Help is corresponding to the databook in the essential items.

3.15.8.2 Help Syntax

If an online-help should be called for a term in the source program (e.g. r epeat ), so the caret must be
placed to the word r epeat in the editor window, then the key F1 must be pressed. Help is opened at the
position of the repeat explanation.

3.15.8.3 Info IDE

You can get an overview of the help items of the IDE by the menu "Info IDE" above. Then do the procedure
as usual, e.g. search, copy etc.

3.15.8.4 Info Syntax

You can get an overview of the help items of the IDE by the menu "Info syntax" above. Then do the
procedure as usual, e.g. search, copy etc.

3.15.8.5 About... and compiler registration

Here the actual version of IDE/PED32 is displayed. Two register fields serve to enable the compiler or the
compiler of E-LAB Computers. The procedure is enclosed as info to the respective compiler.

E-LAB Computers Editor - 3.29



AVRco Tools

=R E]

3.30 — Editor E-LAB Computers



AVRco Tools

4 Simulator / Debugger

by Gunter Baab

4.1

Introduction

=R E]

The Simulator an indispensable tool to find logical errors in your programs.
Each program should first be checked with the Simulator.

Start the Simulator from inside the IDE with F9 or use one of the SpeedButtons * =

4.2 Overview —the Desktop

As usual the desktop consists of several areas:
header, menubar, toolbar, working area and statusbar.
The appearance of the working area varies depending on the selected windows (see the following

examples).

ENE-LAB Simulatar [test - megal28] [Simulator]

Project Breakpoints Watthes Run Extern Search Configurs Properties Windows Help

2 & _I_JﬁI_JE_l_!L!ﬂs!E [sec €5 asn| BI@) x| | T

= AVRsiin 6.20
Simulator

=18l

h

Main Unit | nclude | addrass opeode  memnomic & ~StackPi—— —FramePtr [ SlahsRegster |l
‘T — = 000000 S40C004C  JHMP  DO4CH UUEIEI ‘]’“UUUUQ Fuuuu_g] I THSYNZIE
00000z 340C00DE  JMP 00DEh
{ $BOOTRST $0FO00 Re 1 te FOFOOO j SHOOOARREIL0NDE. Wi UBDety X[E Rampz '_ '_ r '_ l_ l_ '_ '_
e h Reset dumnite ¥ 000006 S40C00DE JMP  0ODER [“oooo ’— UUUU _.ZIHI— 0000 77| extemal inteipts
{ §W+ Warnings} {Uarnings off} RODONATSENC00RE. IR goper, -
= & 00000A 940C00D6 JMP  OODER ‘—AccG\u— (AeeGhi | - AecHlo | - decHhi |
b ariicn o magailt, EREE 00000C 940C00DE JME  0ODGh 'R0 00 HFH 0o HHZ oo ||H3 0o HFM oo ||H5 0o HHB 0o ||H7 DU‘
. : DDOOOE S40C00D6 JMP  0ODER
Miport SyeTicks 000010 940C00DE  JMP 00D&eh
= L r 00001z 940C00DE JMP  OODER R8 00| R9 00| R1000 |H11 [=le) HFHZ [=le) ||H13 oo HHH oo ||H15 oo ‘
oo et ool 5 000014 940C00DE JME  0ODGR :
’ 000016 940CO0DE JMP  0ODER [ A [ Acedlo | Aok AchIn*"Ac:Dh AecElo) FAccEhi—
Define 0000LlE 940C00DE  JHMP  OODER ‘HTE oo HHW a0 HHTE oo ||H19 a0 HHzU UD R21 DU'—HH22 DU—I R22 00
- . 000014 540CO0DE JME  0ODGh
Frossipey omicoannn (;SZSZ} 0000LC 940C00D6 JMP  DODGR \~AceFla— ~AeoFhi | ~AccBlo| -AcoBhi-| -FmPl— - FPiHi— -Acclla | -AccChi—
sza:ksxze = $UI;EQ e 00001E $40C00DE  JMP 00Déh ‘H24 00| |R25 00 ||R26 00 | |R27 00 || A28 DD| R29 D’D—HHSD DE—I A3 o0
FramsSize = §0064, iDava: 000020 940C007C JMP  007CH 5| = :
- Giohal Watches P [l 3]
Tuplementation E Peripherals
T s70.97F | seo.ger | se0.ser | gan.sar | seo.ser | Global | EEmom | Unt | Lol | Spstem |
$c0.%CF | $p0.30F | $EO.SEF | $FOLSFF | .
52092 | ga0.95F | 940.54F | $o0.seF | gen.ger | | [Isentfer [ Tupe [Waluis [ Remaik
{ Type Declaracions } \NF \NE DRE ORTE
oo 322 (00
o — ADCH ADCSRA— | —ADMUX
ﬁm |DD |$25 ] |$25 nn‘ ‘$27 ‘DD‘
f <l rAesR—— UBRROL— ~UCSRO&—
4 _.‘J hza EIEI‘ |§29 |EIEI| |‘§2A DEI‘ ‘$2EI [ oo |—
DR1—— PCR—— = —
0| e o o (o] v o [ o0
iData i EEprom
ress 00/ 0102 03 4.0 06 07 08 09 04 0B 0 op 08 0F ascii  «||| A AR S x|
D0l00 00 00 00 00 OO0 OO0 00 0O 00 OO 00 OO0 00 00 00 Process
00110 00 00 00 00 00 00 00 00 00 00 0O DO 00 00 00 . SysTick MAIN_PROC
00120 00 00 00 00 OO0 OO 0O OO 00 OO0 00 00 00 00 00 Stack - Frams
00120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00140 00 00 00 0D 0D 00 00 00 00 OO 00 0O DO 00 00 st e || e [
00150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010 00 00 00 00 OO0 OO 0O OO 00 OO0 00 00 00 00 00 g
1] | 2
[Fouble click to nspect watch | cycles| O time| 0000s Zero| elock]” B MHz | noTrace | [jmechDoa

Heap UEage 50

E-LAB Computers

Simulator - 4.1



AVRco Tools

=R E]

4.2.1 the Header

The Header shows the project name and the used controller type:

ﬁE-LnB Simulator [test - megal 28] [Simulator]

4.2.2 the Menubar

The Menubar contains the usual PopUp menus.
See in the chapter "the Handling of the Simulator" for a detailed description of these menus.

Project Ereakpoints Watches Run  Exterm: Search  Configure Properties  Miindows  Help

4.2.3 the Toolbar

The toolbar contains "SpeedButtons" for many functions. In the Menu "Windows" this bar can be enabled /
disabled.
The SpeedButtons are —besides the Menubar- a further possibility to call the different functions.

= 2|34 2| =] = el [sre € asu| BI@| % || D] 02| =] 5|

As far as the mouse cursor touches a speed button you can see the meaning of this button in the Statusbar
(see chapter "the Statusbar").

4.2 — Simulator E-LAB Computers



AVRco Tools

e-la
4.2.4 the Working Area
As mentioned, the appearance of the working area varies depending on the selected windows.
The state (size/position) of the windows is stored with the project and rebuilt at a new start of the
simulator.
The simulator distinguishes mandatory and optional windows.
The mandatory windows are always on the working area and can be minimized.
In the following example all mandatory windows are maximized.
frang (ol | e — e
Main | Urit T | addrese opeode mEmnonic a]
SE——— = 000008 S400004€  JHD| AR4nK 1
i = :I ELTTIERER TG I B Y Pro cess + Stack  Frame %
000004 240C00DE  JHMP et 3 5
{ $EOOTRST $0F000} {Beset Juup to $0F000) Beis el s Process
HOSHAD O !_—_-—
TS tarmangs) P s00ss sascoons i | SETEMANPROS
o = et e Babbs sancoobe e Hu‘ = Hd“‘“ =
Tuport SysTick; 000010 240C00DE  JMP
000012 240CO0DE  JIMP
Fioh, Bysten Tapase. & 000014 240C00DE  JMEP
i e B
A e —
|"‘F"lDDDD _g]H?EoEgEEE‘ llfv%ﬂn%z‘ *5?“?—{‘?8‘95 vz e erAlF'anEIPoncl_PortDiPortElP
7 Eo s T B8 PORTA 7654321
‘X%ﬁ .é] ‘ | ﬁhﬁ .ﬂ ||H70§AD?D _2] ‘ exteinal intermupts oo Iﬁﬁiﬁiﬁiﬁlﬁlﬁr
B S ] PHA. 765433219
|§’Ecccu;lg‘ HA1 Gnhu HAé %‘DHHAB %hoHHa DDHH5 DDHHS DDHH? uo‘ A X e
‘ ‘ OORA 765432110 Hw{'ﬁ‘
|HE oo HHS oo Hmu oo HHH oo Hmz oo Hma oo HHM oo ||H15 oo ‘ | 00 [OTEI0IEIOMEloM san ‘ "_Ueagiﬂ;gf‘
“hAocB | Aot Amﬁlo-'l—Acmﬁi"l—AcdﬁIu" (Aol —AneEla) mAceEhiT DRt  SPCR— @PSR —ZEI;DR
R1E 00 H1?DD|H1EDD|IHTHDD‘IHZUDDMHZ1 DD|‘HZZDD||H23DD l4 ‘$2C ,EI 520 \E‘ ‘$2E \ﬁ" ‘WF m‘
2+ 50| 725 | e || o || 0 | 2 0o | 730 oa | [mor a6 ||
With all mandatory windows minimized and no optional windows open you see the following
representation:
ES |y criob ot i |

To minimize the mandatory windows use the corresponding - 0] x| button

To maximize these windows use a double click on the header (the name).

E-LAB Computers Simulator - 4.3



AVRco Tools

=R E]

A typical representation could be as follows:

Mair | Unit |
program Test;
{ $#BOOTRET $0F000})

{$NOSHADOW}
{ $W+ Warnings)

{Deset Jump to $0F0O00J
{Warnings off}

Device = megal28, VCC=5;

Inport SysTick:

From System Import ;

Define
ProecClock = 1&000000; {Hazrtz}
SysTick = 10; {usec}
StackSize = $0064, iData;
FrameZize = #0064, iData;
Inplementation
{$IDATR}

{

Inchude

P8 = 3] [Pt ciobat watches M=k
(T
'fl Global | EEpom | Unit | Local 4]0
Idntifier | Tvps | Walue
4 | |
A 5

Forté |ports | Perte |Pertn | Porte | Portr | Porte
PORTE 7 B &4 3210

(eI 1 o N A =
765432110
[O[orarorommm s

Pl &

[ oo

{ Type Declarations }

feype

{

DR &
| oo

7B A4332110
[ N G N TS

{ Const Declarations }

{

{ War Declarations }
{$IDATA}

Bl FTET 5i0) x|

The optional available windows depend on the used hardware and the driver imports (unused

options are greyed out).

In the following example the SwitchPort-, the LCD- and the 7-Segment driver was imported
and the corresponding windows (and the source windows) are maximized.

' Main. |

dhegin

LIt

LCDxw 0, 0) 7
write (LCDout,
LED=xvw (0,107
write (LCDout, ' LCD
write (Displut,'lz34');

' Zzle Character

=T B B )

o

EnableInts;
loop

5 i
o Jend TestiZ.

Al

‘1z

Uy

SwitchPorks ST
| Include. [ = [
Sywitch A
Swiitch. 2
Switch1.3
Swwitch 4
Swwitchl .5
Switch B

Swteh 7

IR Ag g nsall

4.4 — Simulator

x|

E-LAB Computers



AVRco Tools

=R E]

4.2.5 the Statusbar

The statusbar is on the lower screen edge

Eiatus cyeles) T time [ E250ns [zero] ctock | 16 MHz . | noTrage | (ich Don  ISS——8

Heap izage W

"Status" shows hints about the available action at the actual mouse cursor position, e.g. the meaning of the
SpeedButton at the mouse cursor.

"cycles" shows the number of the executed processor cycles.
In the example above 1 cycle was executed.

"time" shows the used time (in a real system). Above 62,5 nsec., that corresponds to a clock frequency of
16Mhz.

"zero" resets the "cycles" and "time" to O for a new measurement.

“clock” is the frequency defined in the project.

The "Trace" area indicates an active trace (Assembler or Pascal). See the chapter "Menu Run".

At the progress bars for "Watchdog" and "Heap" you see the remaining time to trigger the watchdog

or the used / free memory of the heap memory area. These functions are in the above example
not used (see chapter “Heap”).

4.3 the Handling of the Simulator

The following chapters describe the menus of the menubar an their options.

4.3.1 Menu Projekt
4.3.1.1 Open/Save/Save as /Print/ Printer Setup / Close

These options work like the "File" menu in the Windows / Office standard.

4.3.1.2 Reload / Reload EEprom

To debug the (simulated) memory areas IDATA and EEPROM can be changed.
Sometimes it is helpful to reload the original contents.

You could terminate and restart the simulator. But it is easier to use these functions.
"Reload EEProm" initializes only the EEProm area, "Reload" loads the whole project.
For JTAG Mode: see chapter "JTAG / OWD Debugging — UpLoad/DownLoad".

E-LAB Computers Simulator - 4.5



AVRco Tools

=R E]

4.3.2 Menu Breakpoints

You can set breakpoints in the "Source"- or "Disassembler"- window (see chapter "Menu Windows-Source /
Disassembler").

Hints:
the simulator "remembers" the breakpoints using absolute code addresses. These breakpoints are
retained at a restart of the simulator. If the source changed the breakpoints may be at other locations.

There are also SpeedButtons for "Toggle Breakpoint" (or function key F5) and "Show List".

In JTAG Mode there is a limit of max. 3 breakpoints: see chapter "JTAG / OWD Debugging — Hardware
Breakpoints".

4.3.2.1 Show list

Shows an overview of all active / inactive code-breakpoints:

List of all code breakpoints . : [ E]
Hodule [iine [iadeesz [Sieine lrase [Erinacion | |
Testa . .pas 60 F00004C inactivel ] 1

Testi.pas 61 F00004F |inactive 1 a

ARAAMA LSS
|so0005:2

Tests.pas a7 000061 inactive 1 o 4
Testd.pas 65 000064 |inactive 1 ]

X Clear Alll ;@ delets | [T Stomakschiedule L4 Find | E} Edit | j‘ng;.;it |

"Line" is the source line, "Address" the address in the flash memory.

4.6 — Simulator E-LAB Computers



AVRco Tools

=R E]

By the "Edit" button or a double click on the breakpoint you can de- / activate it.

5

Module  [TesiZpae

Line [51

Addr s00004F

Condition |0

FPass [

[T active

X Cancel

Deactivated breakpoints are shown in the source window but they do not stop the simulator anymore.
"Pass" is a counter. It is decremented every time the program passes that breakpoint. At zero the
simulator stops the program. This is not a permanent setting. It has to be set at every "break".

The other options are for future enhancements.

4.3.2.2 Reset all Breakpoints

Deletes all breakpoints in the source. Do not confuse this with the state "inactive" where the
breakpoints are still in the source but are disabled.

Da ist noch ein Bug drin, wird noch ausgebaut. (+rh*)

4.3.2.3 Stop after ..

Here is the stop condition the number of performed processor cycles. By selecting this option
a popup window to enter the number of cycles comes up.
This option in not available in JTAG mode.

4.3.2.4 Stop on Schedule, Stop on TASK Kkill

These are on / off options and helpful for multitasking programming.

"Stop on Schedule" stops the simulation as far as the "scheduler" performs a task switch.

"Stop on TASK kill" stops the simulation as far as the "scheduler" has to "kill" a task. On a correctly designed
multitasking system this should not happen.

This option in not available in JTAG mode.

E-LAB Computers Simulator - 4.7



AVRco Tools

=R E]

4.3.25 Memory Write Breakpoints

This option stops the simulator as far as a memory address in the RAM / EEProm (a variable) is
changed.

hint:
the simulator "remembers" these breakpoints by the memory address and they are retained
at a new start. If the source file changed the breakpoints may be at other locations.

Attention:
these breakpoints are not shown in the "Show List" !!! "Show List" displays only the code breakpoints.

Use a double click to edit a breakpoint. Actually only the address is important.
"Pass" / "Condition" is for future enhancements.

The menu "Watches-Add Watch" (see below) offers a simple possibility to set a breakpoint at the address of
a variable.

When dealing around with pointers but also in common it's possible that some variables are overwritten or
destroyed without knowing the reason for this. To better find out the circumstances the Simulator is
enhanced now so that it is possible to place breakpoints onto variables.

Each time if such a variable is overwritten or changed by the application the program stops and an info
message is raised. So it is very easy to determine which part of the program or statement writes or changes

the variable.

A memory breakpoint can only placed to such a variable which is already placed into the watch window.

EAGlobal watches O] x|
EE prom I Lk I Lacal I Syzstem I
Identifier | Type | Walue | Remark | )
N Evyte £00 Breakpoint A double click onto the blue
- Word s0000 - editfield of a watch variable
. Flagl Word :0 FemRpoint opens the watch edit dialog.
E| 1_:ut,r Eruam [mErk]
i HIL Eram — Breakpoint
arr Array Char
F- recl Becord
Edit Wariable =|| Now the memory breakpoint can be switched on or off
_ —Representation— | " the watch edit dialog.
Marme : ptr Pointer MIL o
Type - Pointerta Enum ’;EH/’ Breakpoints to records, arrays and pipes are not
_ Eimal possible. But it's possible to place a overlay variable
MG < (Eetae] A1 / & char onto such a variable so these types can be included
Addr : §0147 [+ Breakpaint indirectly.
) biriany
Yalue II-IIL
" boolean
= float
.ﬁ.bbrechenl oK £2i enum

4.8 — Simulator

E-LAB Computers



tlBreakpl:uints Watches Runm  Exter

AVRco Tools

=R E]

n

[ Toggle breakpoint FS k‘ﬁ In the Breakpoints menu there is the item memory write breakpoints
= Show list — which shows an overview of all memory breakpoints.
E Reset all breakpoints
Stop after., :
Stop on Schedule / rt
pr ' 4
mermary wrike breakpoints
i Fe:
i Test I Waz
List of all memory breakpoints 5'
Name Module Address |Memory |Pass ICDnditiDn -
count AVE Increment j0074 Global RAM 1 =
1i AVE. Increment $0076 Glokbal RAM 1
—_ absolute address  §0020 RAM 1
id
X Clear Alll W2 delete | =) set absolute Breakpaint | l-LE:.;i[ |

It's also possible to set aMemory

Set Bp Hex address

Breakpoint to an absolute address.

Then this absolute address must be edited here.

Hex address

|$DDDD

Information

Metmnory breakpoirt in ;. Globs
at memory address ;. $00147
war name : ptr

i module : Salokal

If in a debug run a write access to such a variable is detected the

IR&M | execution is halted immediately and the info on the left pops up.

E-LAB Computers

Simulator - 4.9



AVRco Tools

=R E]

43.26 Testl/O

Not yet implemented. For future enhancements.

4.3.3 Menu Watches

To select the variables to watch (show their content in the simulator) and select their presentation.
In JTAG mode you must note the chapter "JTAG / OWD Debugging — UpLoad/DownLoad" !

4.3.3.1 Add Watch

The simulator lists here all global variables. The variables are listed at the "Globals" tap. At the "System" tab
you find all system variables, at the "Unit" tab the (global) variables that are defined in units. Local variables
of procedures and functions are not available. These are created at runtime when the corresponding
procedure or function is running.

The button "Memory Break" easily permits a setting of a "memory write breakpoint".
"Add to WatchList" and "Remove Watch" adds or removes the selected variable to / from the "WatchList".

Hint:

the "WatchList" is a mandatory window and described in the chapter "Windows-Watches".
With the "Edit" button you can change the actual value of a variable, select the presentation
(e.g. decimal / binary / hex) and also define a "memory write breakpoint".

Another possibility to add watches is a double click on a variable in the list. A double click on a variable that
is already in the "WatchList" opens the "Edit" menu.

Hint:

You may also click in the "Source" window on a variable to add/delete it to/from the "WatchList" or
to edit it (see chapter "Windows-Source").

4.10 — Simulator E-LAB Computers



AVRco Tools :
4.3.3.2 Delete all Watches

For a fast delete of the "WatchList".

4.3.3.3 Popup Raw Display

This is a "check box selection" for complex variables (structures / arrays). If active, a double click on such a
variable in the "WatchList" shows a hex memory dump of it.
In JTAG mode this also updates the variable.

4.3.3.4 default Watch representation

Shows a matrix of all variable types (byte, word, integer, ...) to select the possible default representations
(hex, decimal, binary, ...). An individual selection is done in the "Edit" Menu (see chapters "Watches-Add
Watch" and " Windows-Watches").

4.3.4 Menu Run

To start the simulation (in the desired manner). In addition there are various settings for the different ways of
the simulation and selections to enable traces. In JTAG mode traces are not possible.

For the majority of these important functions there are also SpeedButtons.

In single step mode the middle SpeedButtons

SRC ASM
select Pascal (SRC — Source Step) or Assembler (ASM — Assembler Step) stepping.

In JTAG mode you must note the chapter "JTAG / OWD Debugging" !

4.3.4.1 Reset processor Ctrl+F2

Sets the program counter to 0 to restart the simulation from the beginning. Corresponds to a hardware reset
on the real system. The processor registers are loaded with the specified initial values.

4342 Go F9

Starts the simulation with maximum speed.

E-LAB Computers Simulator - 4.11



: AVRco Tools
4.3.4.3 Goto cursor pos F4

Starts the simulation with maximum speed until the cursor position in the source window or a breakpoint is
reached.

warum ist die Option "greyed out” und nur der entsprechende SpeedButton geht?

- klart rh noch. Wird noch freigegeben. Kommentar bitte stehen lassen.......... (+rh*)

4.3.4.4 Stop simulation F2

Stops the simulation.

4.3.45 Stepinto F7

Performs a single step. Functions, procedures and loops are also executed in single steps.

4.3.4.6 Step over F8

Performs a single step. Functions, procedures and loops are not executed in single step mode
(i.e. are executed in a single step).

4.3.4.7 Step out F6

Executes the current function / procedure / loop with maximum speed and stops (as far as there is no
previous break condition).

4.3.4.8 Multiple Steps Shift+F9

Executes a predefined number of steps with maximum speed.
See below: "Multiple step value".

4.3.4.9 Animate Ctrl+F9

Starts the simulation with reduced speed.
See below: "Animation speed".

4.3.4.10 Multiple step value

Set the number of steps for "Multiple Steps" (see above).

4.3.4.11 Animation speed

Set the speed for "Animate" (see above).

4.12 — Simulator E-LAB Computers



AVRco Tools |
(=l =]
4.3.4.12 Enable Trace ASM / Enable Trace HLL

To track a trace either on Assembler or on Pascal level.

Hints:

to view the trace see chapter "Windows-view Trace".

Assembler traces show in addition the Pascal source statements. During a trace session you can change
from ASM to HLL or "disable" (and resume) the trace tracking.

In JTAG mode these functions are not available.

4.3.4.13 Clear Trace buffer

Clears the trace buffer that is otherwise it is constantly updated.
In JTAG mode this functions is not available.

4.3.4.14 Call Stack Ctrl+F3

Shows the actual nesting of the return stack (the return procedure- / function names).
In JTAG mode this functions is not available.

4.3.5 Menu Extern

You find here all processor external devices that can be simulated (in opposite to e.g. the ports).
Except "Interrupts” all items are also in the menu "Windows". See chapter "Menu Windows" for the
descriptions.

4.3.5.1 Interrupts

To simulate the external interrupts (at the processor pins INTO, INTZ, ...).

Interrupt Simulation x|

Activation time  Siimulation
i = I =nabled
Repeatinterval  Latency

E = 5
Probahility % Time ¥ariance %
I s L 3

gﬂi share | j.'|_ Elusel

This function is actually not available.

E-LAB Computers Simulator - 4.13



o AVRco Tools
4.3.6 Menu Search

Is used together with the windows "Source", "iData" (the RAM memory), "EEProm" or "Code"
(the Flash memory) and maximizes these windows if necessary. To search for specific locations (addresses),
hex patterns or text.

4.3.6.1 Show Code at..

Show the flash content at a specified address. Maximizes the "Code" window if necessary.

4.3.6.2 Show Data at..

Show the RAM or EEProm content at a specified address. Maximizes the "iData / EEProm" window
if necessary.

4.3.6.3 Search Code hex pattern..

Searches a hex pattern in the code area. Maximizes the "Code" window if necessary.

4.3.6.4 Search Data hex pattern..

Searches a hex pattern in the data area. Maximizes the "iData / EEProm" window if necessary.

4.3.6.5 Search in Source F3

Performs a full-text search in the source file. The usual options (forward, backward, whole word etc.) are
available. Maximizes the "Source" window if necessary.

warten auf Antwort von rh — derzeit keine Maximierung von Source Kommt noch

und bleibt deshalb als Hinweis stehen. Das Source Window wird zukiinftig der gleiche Editor wie beim PED
sein, nur read-only. Aber Syntax-highlight, Kommentar Beachtung etc. (+rh*)

4.3.7 Menu Configure

To make some settings concerning the desktop and the simulation.

4.3.7.1 Show Hints

Enables / disabled the popup help at the mouse cursor. You can also see these hints in the statusbar
on the lower left corner of the screen.

4.3.7.2 Save as default

Concerns the positions and alignments (maximized / minimized) of the windows.

4.14 — Simulator E-LAB Computers



AVRco Tools

e-la
4.3.7.3 Config with default
Restores the positions and alignments (maximized / minimized) of the windows.

4.3.7.4 COMport [ICE..Monitor]

To configure the debug hardware if any connected.

~Device
 Simulatar

¥ Stap Timers

¥ Popup Software Breaks

“”””””“'ﬂ
shart UISE fimeowt lan

Pawer Supply for WD or JTAG made

SAENE
S
COom = :
Eheck Port M1 Ext |

"Simulator": no hardware connected that supports debugging

"ICE200": a Atmel ICE200 Emulator is connected. "Stop Timers" stops the timer of the controller
as far the simulation is stopped — e.g. at a breakpoint.
The ICE200 communicates via a serial interface with the PC. You also can configure this interface.

"onChip JTAG-ICE", "onChip OWD-ICE": the internal debugging machine of the controller is used.

JTAG (already implemented) is the standardized JTAG debug Interface (JTAG = "Joint Test Action Group").
"OWD" is reserved for the future "One Wire Debug" Interface. "Stop Timers" stops the timer of the controller
as far the simulation is stopped — e.g. at a breakpoint.

"Popup Software Breaks" shows an info window at a software breakpoint.

"Check Port" is with hardware debugging mandatory. It also initializes the debugger.

The JTAG programmers communicate via a USB interface with the PC. You can use the "USB Timeout" to
optimize the speed (be careful!).

"Power Supply for OWD or JTAG mode" selects the programmer as current source for the target.

The button "Check Port" searches all available interfaces for a programmer.

As the programmer is also initialized by that button, it is a mandatory selection!

E-LAB Computers Simulator - 4.15



.. AVRco Tools
4.3.8 Menu Properties

As the simulator can not reach the speed of a real system, some functions are working with inconvenient
effects. The following "check box switches" help to improve this behaviour.

4.3.8.1 Short mDelay

"mDelays" are (in the real system) delays in the range of milli-seconds.
In the simulator they can take quite a lot of time. So this switch shortens these delays.

4.3.8.2 Fast RTC

Is used to increase the speed of the realtime clock for a more realistic simulation of the RTC driver.

4.3.8.3 Short Beep

Adjusts the duration of the sound driver output to the lower speed of the simulator to archieve a more
realistic simulation.

4.3.9 Menu Windows

Is used to open optional windows and to get informations about the multi tasking system.
If the corresponding driver is not loaded (and the function is not available) the option is greyed out.

4.3.9.1 Toobar

Enables / disables the toolbar with the SpeedButtons.

4.3.9.2 Arrangeicons

Arranges the headers of the minimized mandatory windows at the lower screen edge.
Optional windows are completely closed (not minimized to headers or icons).

4.16 — Simulator E-LAB Computers



AVRco Tools

=R E]

4.3.9.3 Source

Is a mandatory window.

EXTTE— —IE[
Main | Ui | Include |
arP @ tarrl; ﬂ
rec - tRec;
heofir
bhl:= bbw;
bbw:-= bhl;
bbheo:= bbw;
bbw:= bbhe;
iil: iiec;
iic:= 4iil;
uProci;
symh:= symh;
nZBec. rWord: = $1z34;
uZBec. rMordl: = uzBec.rWord;
inc {uZRec. rWard) ;
n3Flt:= 3F1LC;

#nd;

.“‘.o Coonol DS D ol O S

{ Main Program }
{# IDATA}

dhegin _I
ubrocl ($12);
uProci;

EnahleInts; ‘Ill
3

IJ. D

"Main" contains your Pascal source. The windows "Unit" and "Include" are at first empty.

By a double click in one of these windows you select a unit or include file to display.

As a prerequisite you must have the unit as source file (not only as a precompiled .PCU).

If your program branches to a unit or an include this file is automatically loaded in the corresponding window.

Furthermore a right click offers the option "Find Text" to search.

If the text cursor points to an executable statement the options "Set PC to line pos" (so the next single step
will execute this statement) and "Goto line pos" (run the program to the actual cursor position) are available.
A click on the small blue circles (in the left most column) can be used to set / reset a breakpoint.

A double click on a variable adds this variable to the "Watch Window".

E-LAB Computers Simulator - 4.17



AVRco Tools

=R E]

4.3.9.4 Work Registers

Is a mandatory window.

wu:l:llzl;ps!!.rs ﬂ
—PC — (~StackPir —FramePtic——— ~Statuz Registel
[ oocx g2 ||| ooool gl||[ oooo || 1 T H S ¥ N I ¢
— T FE e
“Gbas || [ ooan gl ||| on |

AccGlo A i1 (= AceHlo CoHRr
A cGh AiocHI “AcoHhi
|RIJ DEI | ‘ R2 0o ’—HS e HFM oo HF!E (] HHE oo HH? DD‘

|F|8 DDHF|9 DDHFHD DDHHH DDHFH2DDH'FHSDDH'FH4 DDHFHE DD‘

heeB— —hcch— —Acelo— —AoeAb AccDlo— —AceDhi —hecEli ~AccEhi—
R16 00 ‘ R17 00O ‘ R18 oo | |R13.00 ‘ R20 0o ‘ F21 oo ’7H22 DUD—‘ ‘H23 og ‘

~AcoFla | [AccFhi | AocBlo | AceBhi| - FinPic (- FPuHi | - AceClo | [-AccChi—
R24 0O ‘ R25 00 || A26 00 | R27 0O ‘ R28 00 ‘ R29 ':'D—I R30 uan—‘ R31 0O ‘

B
—iritFlags ~lrithdazk
GIFA af EIFR GIMSE.. EIMSK ar GICR
BIT INT name EIT INT name
7 [0 1T 710 IMT
B [0 INTO g [0 INTO
5 [0 - 5 [0 —
4 [0 — 4 [0 —
3 [0 - 3 [0 -
2 [0~ A
100 - 1 00—
0 [0 - 07—

Useful for debugging on Assembler level. It shows the internal processor registers, the symbolic names that

uses the AVRco and the external interrupts.

Note that you can here also change the contents of the registers.

In JTAG mode see the chapter "JTAG / OWD Debugging — UpLoad / DownLoad".

4.18 — Simulator

E-LAB Computers



AVRco Tools

=R E]

4.3.9.5 Processes

Is a mandatory window.

Mait | Uit Include I
procedure coc; :I
war

i, 3. k - Byte; :
hegin @Prucess+5tack—1—l‘!ﬂ_‘" _ﬁl
. =Ly st Process
.l T EF GysTick| MAIN_PROC
@ = = 3
& | wog; Stack Frame
a lend: addr |v::|:|nt* addr In:u:unt"
o107 3F _J {olsc oo
Erosedanahoe oLog 00 0188 01
N Pl 0105  3C Diss 02
. Dlo4 00 piea [0z |
0los  &c glgs 0o
procedure aa; oLoz 01 01s7 oa
: heg}?} 0lol1 37 0l8s 00
.z P 0lon 00 0185 00
GRS o184 oo
OOFE 00 0183 0o
e e s e E R e OOFD 00 nlgz 0o i
{ Main Program }
OoFC 00 plsl o
{$IDATA) sl - | GslRal -
begin
Q- aas
-
R LI_I

In the upper example there are 3 nested procedures. The lowest one has 3 local byte variables.
You see the stack and frame content when the breakpoint was reached. The positions of the stack /
framepointer are blue highlighted.

The buttons "state" and "SysTick" are of interest for multitasking and explained in the chapters
"Windows — view Process states" and "Windows — SysTick / Scheduler Timings".

4.3.9.6 Disassembler

Is a mandatory window.

Disassembler shows the Assembler code. The actual position of the program counter is highlighted in bright
blue, the position of the text cursor in dark blue. By a click on a line in the source (a line that generates code)
the disassembler window shows the corresponding code area. In the same way a click in the Assembler
code shows the correspondent part in the source window.

Use a right click to set the program counter to the address of the statement at the mouse cursor.

E-LAB Computers Simulator - 4.19



AVRco Tools

=R E]

4.3.9.7 Code memory

Is a mandatory window.
Shows a hexdump of the Assembler code. With right click you can select different presentations and use a
search function.

4.3.9.8 Data memory

Is a mandatory window.

Shows a hexdump of the RAM and the EEProm memory. You also can change these areas.

A right click makes a search function available. In JTAG /OWD mode there are additional functions
to Upload / Download these memory areas..

4.3.9.9 Watches

Is a mandatory window.

Shows the actual value of variables. In JTAG mode see the chapter "JTAG / OWD Debugging" !
By a double click you can change the value of a variable and select the presentation mode (hex,
decimal, ...).

For a better overview the variables are grouped under the tabs "Global", "EEprom", "Unit", "Local"
and "System".

Under the local tab you can -by a right click- select to display (to upload) the local variables in
JTAG mode at a stop inside a procedure or function.

"check Frame and Stack" uploads in JTAG mode when the window is updated also the stack-

and frame pointers and checks these for an overflow condition.

A right click in the other windows opens a menu to add or remove watches and to set memory
breakpoints. The option "Refresh all Watches" is very important in JTAG / OWD mode.

4.3.9.10 Ports

Is a mandatory window.
Shows the available port registers (PortX, PinX, DDRX) of the used controller with their symbolic names. You
also can modify the contents for debugging purposes.

4.3.9.11 Peripherals

Is a mandatory window.
Shows all available registers of your controller sorted by their addresses. Except the read-only registers
you can also change their contents. This window is useful for debugging of Assembler routines.

4.20 — Simulator E-LAB Computers



AVRco Tools

=R E]

4.3.9.12 view Trace

Shows the traces (SRC / HLL) that can be enabled in the menu "Run".

In the following example the lines 78, 79, 80 were executed with HLL trace enabled. The line 81
was executed with ASM trace enabled.

In JTAG mode traces are not possible.

ﬂne S I;rmt - -

Time bddr Instruction Destchdr Walue
File: TutorDemo.pas

6.490ms 123 Init;

Froc/Func: INIT

6.491ms 75 FunTim := xRunTim;

f.491m= 79 FortE :=-%00111111;

£.491m= 20 DDEE := %00111111;

6.491m= 81 SyzsLedFlashillOn;

fL.491ms= Qooo1ly D49E RCALL +1179 —>04E&000000 OO0
6.491ms 0004E& EF1F SER R17 gooo1l FF
.49 1ms QO04EY 9310006F 3T3 0O06Fh, R17 QooosF  FF
f.4391m= QO004ES 9505 RET oooooo oo

4.3.9.13 view Process states

This window is used to get informations about the MultiTasking system.

You can check the priorities of the tasks / processes and the max. used stack and frame memory
("StkPeak" / "FrmPeak"). You should simulate the application for a longer time and try to simulate
all possible events (I/Os, external interrupts etc.).

This function is not available in JTAG mode.

Process state . B . B . _ ﬁi
HName Type Il |Prio|Status |Entries |[Cycles Tite IP',erc'. |Stk1?ea:l; .FrmPga-}:!ﬂ
MATN PROC Process O _5 run (259 9555478 603 .7ms (92% 11 9
LCDoutpur Process/1l 3 idle 123 Ge3574 41.47ms 6% =] 3

E-LAB Computers Simulator - 4.21



=R E]

AVRco Tools

4.3.9.14 SysTick / Scheduler timings

Is used to check the MultiTasking system by displaying the used resources of the SysTick and the

Scheduler.

This function is not available in JTAG mode.

4.3.9.15 Terminal I/O

Import: SerPort / SerPort2
Is an optional window to debug the communication via the serial interface(s).
The actual controllers come with USARTS that support 9 databits (e.g. for multi processor

communication). You select the value of the 9" bit in the input area. To enter hex values use the
Ctrl +0...9, A...F keys.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available

(makes no sense).

4.22 — Simulator

&

R TR T T I

£
- Tirme consurnption
minimal Cycles 610
maxirmal Cycles 870

minimal e 3aae

Enablelnts:
write (Zerlut,'3tartc AT
loop

write [Serout,'IN:
_endloop;

I - |

ol

& el -

"

Hifs FEs
e o

E-LAB Computers



AVRco Tools

=R E]

In the upper (grey) window are the outputs of "SerOut". In the lower window the user inputs that
are read via "Serlnp" and that come in the real system from the serial interface.

4.3.9.16 ADC

Import: ADCPort

Is an optional window to adjust the analog values at the ADC inputs and the voltage levels at the
AINO and AINL1 pins of the analog comparator.

To read the converted input of channel "i* the program uses "GetADC(i)". With only one channel
defined the program has to use "GetADC" (without an "i").

The automatic functions (Sine, Triangle, ...) are not yet implemented and for future enhancements.

ADC Analog/Digital Corvverter chl : :
aCom; ADCY |anca|apcs|apce| apes| snce|aper | aoce)

3 "MDI}:I:

s s || =
a0 70 = =
- (" Sine = o s

20 - Al - ‘g = [
" Triangle e =

: G - =l m

10 ~a0 ¢ Sousre = fi
£ Filier EP'

Controllers with 10 bit ADC have 2 result bytes. By default the result is right adjusted (the high byte
contains only the 2 most significant bits). Only this mode is supported by the simulator.

The optional left adjusted representation (the high byte contains the 8 most significant bits) is not
supported.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available

(makes no sense).

E-LAB Computers Simulator - 4.23



AVRco Tools

=R E]

4.3.9.17 KeyBoard 4x4

Import: MatrixPort
Is an optional window to simulate a 16 key matrix keyboard.

KevBoard Setup I

[F1 e F3 [F4
|P{e':.f1 il«{e'ﬁ ey il«{e';.ul
™ Radio | | Radio'| [ Radio | [ Radio
Rl | P e
= — : Play Eict |Ela-:k Frvdl
EE?‘I%E” Back | P || Rado | Rado |V Rads | 17 lsdo
BN R RE e il F12
Keyd | <eylC|<eyil] <eylZil  |keya Keyln || [key1d Heyl2
Fia | F1a | F15 | FI6 | T Radio | Radio | [ Radio | I Radio
pi] ) RS F13 F14 |F15 F16
bey! 3 Kyl 4 IKE':.-"1 5 eyl
[ Radio | [~ Radio | [ Radio | ™ Radio

A right click on any key opens the window "KeyBoard Setup" to enter individual key names and

to define one set of radio buttons.

There are a lot of functions to read the keys e.g. "ReadKeyBoard".

The keyboard driver has also a memory function to avoid the necessity of a permanent keyboard polling.
Furthermore the system exports a semaphore "KeyBoard" to provide an optimal support of Multi Tasking
(see procedure "WaitSema").

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.18 KeyBoard 8x8

Import: KeyPort8

Is an optional window like the "KeyBoard 4x4". This keyboard has always 8 rows and up to 8 columns.
Radio Buttons are not available.

There are a lot of functions to read the keys e.g. "ReadKeyBoard8".

The keyboard driver has also a memory function to avoid the necessity of a permanent keyboard polling.
Furthermore the system exports a semaphore "KeyBoard8" to provide an optimal support of Multi Tasking
(see procedure "WaitSema").

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.24 — Simulator E-LAB Computers



AVRco Tools

=R E]

4.3.9.19 LCD display

Import: LCDport

Is an optional window that simulates one or two LCDs. Supported are LCDs with 1,2 or 4 lines and

up to 40 characters per line that are connected to 7 or 8 port pins. Supported display controller

types are HD4470, HD66712, KS0070 or KS0073.

By a right click you can select the colours of the background and the pixels (pixel on and off colour).

An output is done by the procedure "LCDout". User defined characters are supported.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

LCD Display

4.3.9.20 LCD_M display

Import: LCDmultiPort

Is an optional window that simulates up to 8 LCDs. Supported are LCDs with 1,2 or 4 lines and

up to 40 characters per line that are connected via a 12C /O expander. Supported display controller
types are HD4470, HD66712, KS0070 or KS0073.

By a right click you can select the colours of the background and the pixels (pixel on and off colour).

An output is done by the procedure "LCDout_M". User defined characters are supported.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.21 7seg display

Import: Disp7sPort

Is an optional window that simulates 1 to 8 7-segment displays. By a right click you can select the colours of
the background and the segments.

The possible modes of connection are multiplex mode or via latched shift registers.

An output is done by "DispOut" (as far as possible there are also alphanumerical characters displayed).
Furthermore there are a lot of functions like blinking etc. available and you can create own character sets.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.22 12C 7seg display

Import: 12C_Disp7

Is an optional window that simulates up to 16 7-segment displays that are connected via I2C expander.
You can build up to 4 groups of displays and each group is limited to max. 8 digits.

By a right click you can select the colours of the background and the segments.

An output is done by "I2C_Disp70ut" (as far as possible are also alphanumerical characters displayed).
Furthermore there are a lot of functions like blinking etc. available and you can create own character sets.
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

E-LAB Computers Simulator - 4.25



AVRco Tools

=R E]

4.3.9.23 14seg display
Import: Displ4sPort

Is an optional window that simulates an 2..8 digit 14-segment display that operates in multiplex mode.

By a right click you can select the colours of the background and the segments.

An (alphanumeric) output is done by the procedure "Displ4out”. Furthermore there are a lot of functions like
blinking etc. available and you can create own character sets.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.24 LCD Graphic

Import: LCDgraphic

Is an optional window to simulate graphical displays. By a right click you can select the colours of the
background and the pixels.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

x|
S o o o B A e e e e
7o i .-—;%
5 ——~— ; 5 LAl b ela
= S SR WO S R .-I:I:I I:I
b gl
e P, L0 Y SN e S (B SO L A s AF¥
s N s
-7 T

The AVRco comes with a lot of high level functions (textual and graphical). You only have to define the
User Device "GraphlOS" containing basic functions (e.g. "write Byte" or "set Pixel").

For many of the most common display controllers (e.g. T6963, SED1531, HD61202...)

the "GraphlOS" is already contained in examples.

4.26 — Simulator E-LAB Computers



AVRco Tools

=R E]

4.3.9.25 File System

Import: FileSystem

Is an optional window.

The drives are simulatted in the memory of the PC and this window corresponds to a disk editor
for the defined drives (max. 4: Drive A to Drive D).

You also can change the contents (in hex or ASCII area). By a right click you have an option to
format the drive.

File System [Drive &] 7 #
Dirive & | D B I

adress 00 01 02 03 04 OF Q& 07 08 02 0 OB O2-0Onr OE OF ascii Ai

ooolco EE 48 45 4C 4C 4F Z0 Z0 Z0 B4 £33 E4 03 01 00 80 _HELLO TETE 5z _J

ooolko 03 05 06 07 05 02 0& OB OC 0O OF OF 10 11 12 13 ... c-_-c.o.c-
OOO1lEQ 00 53 54 EZ 492 4FE 47 B3 20 &4 E3 54 00 35 00 01 _STRINGS T2ST. 5. .
OO01F0 04 00 00 00 00 OO0 00 00 00 00 00 o0 00 00 00 o0 ... ... ... .......
O00Z00 EE 48 45 4C 4C 4F Z0 20 20 54 52 E4 07 00 00 80 _HELLO T8z
oo0z10 14 15 16 17 15 12 1& 1B 1C LI* 1E 1F 20 21 22 23 ... .c-o--. U
OO0EZEZ0 ELS 458 45 4C 4C 4F E0 20 20 54 E£E3 B4 OF 00 00 80 _HELLO LT A
OO0E20 24 25 26 29 28 29 EA ERB 2C ED EE EZF 20 21 22 232 #%&'{)*+, —-_/01EZ
00040 EE 48 45 4C 4C 4F Z0 Z0 20 54 52 E4 OF 00 00 80 _HELLO TATI 5z -:j

"FileSystem" is very simple and about 6 kByte Flash and 500 Byte Ram are sufficient.

Suitable hardware could be external SRAM, EEPROM, Flash, a Foppy, a Harddisk etc.

The AVRco comes with a lot of high level functions (e.g. create / delete files, read / write, set file
attributes, etc.). You only have to define the User Device "FilelOS" containing the basic functions.

The "FilelOS" for the Atmel Flash AT45DB161 is contained in an example.

As the "FileSystem" has a proprietary structure the devices are not compatible to DOS / Windows.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.26 FAT16

Import: FAT16

Is an optional window.

The drive is simulatted in the memory of the PC and this window corresponds to a disk editor

for the logical drive. You also can change the content (in hex or ASCII area). By a right click you have
an option to format the drive.

In contrast to the "FileSystem" this drivers is compatible to the PC file system. A min. file system needs
about 12k Flash and 1k Ram. Supported are MMC, CF Flash Cards and standard IDE drives.

For other hardware there is a general driver included.

The AVRco comes with a lot of high level functions (e.g. create / delete files, read / write, etc.).

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

E-LAB Computers Simulator - 4.27



AVRco Tools

=R E]

4.3.9.27 Incr Counter

Import: IncrPort
Is in optional window to simulate an Incremental Encoder connected to the input of the analog comparator.

Incremental Counter x|
llIIIIIIIIEIIllIlIllI
iR = TS
|||||||||||||||||||H

pos trip i

@| op| Gl | -10764

The green/red arrows are used to control the actual value ("turn the encoder"). The driver uses the interrupt
so changes are only possible in "Run" mode.

In "auto" mode the encoder runs automatically trough the whole scale. The max. scale depends on the
selected resolution (16 or 32 bits). You can use the "pos trip" / "neg trip" to limit the scale. “Speed” is

used to set the “rotation speed”.

The driver is internally working with a 16 or 32 bit counter. "Get / Clear / SetincrementalVal" is used to
read / delete /set this counter.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.28 Frequ Counter

Import: FreqCount
Is an optional window that simulates the Frequency Counter driver. Only the first channel can be
simulated. Actually there is no simulation of the optional 2" channel "FreqCount2" available.

st MHz
2103.3ns

= —100kHz

® g4\ 06 ® L
—1kHz

02 0.8 —100Hz
0.1 pg | |1oHz
—1Hz

e H

4.28 — Simulator E-LAB Computers



AVRco Tools

=R E]

With the slide switch on the right you select a frequency range 0...0,1Hz, 0...1Hz, etc. up to 0...1MHz.

The poti is used to select the frequency. The small button on the lower left corner starts / stops the frequency
counter.

The frequency counter can also be used for pulse width measurement. The corresponding functions

to read the value are "GetFreqCounter" or "GetTimeCounter".

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.29 12C PortExpand

Import: 12Cexpand

Is an optional window to simulate up to 8 ports that are connected via I2C expander. The used PCA9554A
expanders have the same internal registers as the processor ports (PORT / PIN / DDR)

and these registers are displayed the same way as the internal ports in the "Ports" window. The symbolic
names are "PORT 0...7"/"PIN 0...7" and "DDR 0 ...7". You can also change the value of the port bits.
Further controls are not possible.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.30 System Blinker

Import: SysLEDblink

Is an optional window to simulate the SystemLed driver. There are no controls available.

You access the driver via several functions (e.g. "SysLEDon", "SysLEDflashOn" etc.).

With "SysLedFlashMsg" you can signal a blink pattern (e.g. for Error Codes).

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.31 SwitchPort

Import: SwitchPortl / SwitchPort2 / SwitchPort_G
Is an optional window to simulate the SwitchPort driver. Only the imported SwitchPorts are displayed
(the following screen shot shows an example with all SwitchPorts imported).

SwitchPorts x|
Eﬁi LED 1 ‘@I Switchz 0 ‘@I SwitchG0
|ﬂ_ﬁ LED 2 EEI Switch2 1 E Swritch( 1
@ LED S m_ﬁl Swwitch2 2 @il Swvitchiz 2

Syt S : el Suvitchis 3
B (< oitor 3 g Swiehzs

B3 | < itch 4 ‘ﬂ Switchizd m—ﬁl Suritchc:.4

B (< iteh 5 ‘M Switch2 s ‘mf Switcht 5

B oo s M swicnoes B0 swichos

B coier 7 M iswicnzy 0 Swichor

E-LAB Computers Simulator - 4.29



AVRco Tools

=R E]

A right click on any key is used to enter individual key names and to define "auto release" keys.

You can read the (debounced) keys with the functions "INP_STABLEx" and "INP_RAISEX" or the

the whole (bebounced) port with "PORT_STABLEX".

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.32 RCbreceiver

Import: RC5Rxport

Is an optional window to simulate an infrared receiver of remote controls.

You define in a small window the message to send (to be received).

In welchem Mode? Standard oder Extended? Wenn das abhangig von RC5mode ist, warum sind
dann bei "rc_6bit" CMDs > $3F einstellbar? Muss ich prifen Kommentar stehen lassen.

Es gibt den 6bit und den 7bit Mode. Bei 6bit ist der maxWert = $3f und bei 7bit = $7f

Bitte bei Gelegenheit nochmal checken! Auch bei 6bit Mode konnte ich Werte > $3f einstellen! (+rh*)

You enter the value in hex. A checked "toggle" sets this bit = 1. The button "send" starts / stops

the transmission. The function "RecvRC5" reads the received data.

A simulation of a transmitter is actually not implemented.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.33 Servos

Import: ServoPort

Is an optional window to display up to 8 digital servos. It shows the servo positions of the channels

0 to 7 in percentage of (pos./neg.) maximum range. There are no adjustments to made.

The program controls the servos via the procedure "SetServoChan".

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.34 Heap

Import: Heap
Is an optional windows to show the actual usage of the heap memory.

Heap useage 3 _Ei
descr B |data B |=ize -
SO0AF $00B3 40001 |
$00E4 $00ES $000E
$00C3 -free— 30017
§00DF S00E3 $0003

=

You allocate heap memory with the function "GetMem". This function returns a pointer (heap is
only accessible be pointers).
The function "FreeMem" is used to deallocate the memory.

4.30 — Simulator E-LAB Computers



AVRco Tools

=R E]

Each memory block on the heap uses 4 management bytes. These addresses are shown at "descr@".
"data @" shows the start address of the data area, "size" the number of used data bytes.

The upper example shows:

- the heap area starts at address $00AF
- the first used block (a single data byte) uses the address range $00AF to $00B3 (including) =5 byte
- the second block (11 data bytes) uses 15 bytes
- the heap is fragmented (caused by a "FreeMem"). There is a free area between $00C3 and

$00DE (including) = 28 bytes = a block of 24 data bytes
In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.9.35 Stepper

Import: StepPort
Is an optional window.

Stepper Driver A
W = stepsdsec

L e ey

0 2434 2fzec 0000

Position: 27338 Mode: Steplip

Shows the speed of a stepper motor in steps/sec. as bar and decimal value.
The scaling of the bar graph is between 0 and max. speed entered in the source by the definition of
"StepMaxFreq" .

The actual position (in steps) and the actual mode are displayed:

Mode "StepUp": step ramp up (increasing speed)
Mode "StepDown"; step ramp down (decreasing speed)
Mode "StepStop": motor is stopped

Mode "StepRun"; stepping with max. speed

There are a lot of functions to control the power drivers:
"StepperOneCW"; one step clock wise
"StepperOneCCW"; one step counter clock wise
"StepRampCW"; step up ramp clock wise

etc.

The StepPort is used to control H-bridge drivers. To control ICs with intelligent builtin functions

there is in addition a UserPort available.

In JTAG mode the simulation / debugging is done with the real hardware so this function is not available
(makes no sense).

4.3.10 Menu Help

Only the "Info" function to display the actual version of the simulator is implemented.

E-LAB Computers Simulator - 4.31



AVRco Tools

=R E]

4.4 SysTick and Scheduler timings

The SysTick is the muscle of the AVRco system. It does most of the background jobs ie. debouncing of
ports, readout of the ADC, software RTC, handling some Timeouts, Beeper, Blinker, refresh of LED-
Displays, software Timer, Keyboard scan etc. With MultiTasking the Scheduler is also a part of the SysTick.
In common, with extreme and heavy loaded systems the SysTick must do an extreme heavy job.

Because the SysTick is always a hardware timer interrupt (TimerO or Timer2) the global interrupt is
completely disabled until the SysTick has finished it's job. In many cases this disabling is not critical because
the other interrupts will be somewhat delayed and will be accepted and processed after the SysTick job is
done. But with interrupt bursts, for example from a rapidly changing external Int0 etc. it's possible that an
interrupt is not processed because the next one from the same source is already pending. The system will
not become instable but there will be some missing informations.

This can be very important with a serial interface (Rx with buffer). If the interrupt is disabled more than two
durations of a character transfer the first received character in the UART is overwritten by the second one.
New AVRs have a double buffered receive register so this problem is very relaxed now. But also here it is
possible to have character losses when working with very high baudrates, heavy duty SysTick job and slow
processor clock. So it always makes sense to run the CPU with it's maximum speed. With many driver
imports this is a must. The kind of application is not much important, but the processings in the SysTick are
the main reasons.

It's impossible to have any formula which shows the interrupt disable time in the SysTick. There are too
many different factors, depending of the count and type of the imports. But knowing this time is essential.

To get a coarse number (clock cycles or usec) the AVRco Simulator supports this measuring. While a debug
session is running it counts the CPU cycles which have elapsed while the SysTick job is processed. The
smallest and the largest values are stored. But this can only be done in the simulation mode, with ICEs and
ROM Monitor this is not possible. The debug session should execute all states of the application, all
functions and procedures should be executed in order to get real results.

After a sufficient and long simulation the gathered values can be displayed. To do this the menu “Windows”in
the Simulator must be opened. Then click the menu item
Froperties | windows Help SysTick/Scheduler timings.
ﬂ _a v Tosbar This opens the window shown below. Here the sampled
s minimal and maximal interrupt disable times in the
SysTicks are shown.

Arrange icons

v SouUrce
Imclude ¥ work Registers
v Processes

v Disassembler SvsTick and Scheduler b x|
v Code memory
v [akta memory Time consumption
v Watches minimal Cycles 142
v Porks _
v Peripherals DEO7SS maximal Cycles 364
4
By view Trace o rrinirnal Tirme 8.875Us
) 4
VLS [lieIE ) Elel 1 maximal Time  22.81us
SysTickfScheduler timings E0795
nMl1&ar

The picture shows a maximum disable time of about 23usec. With multiprocessing and slow processor clock
and much imports this value can easily exceed 100usec. The consequences then are: also with obviously
simple applications it makes sense to let the CPU run at it's maximum speed.

4.32 — Simulator E-LAB Computers



AVRco Tools

=R E]

4.5 Determine Frame and Stack usage with the Simulator

An absolute critical (deadly) item with a system design is the definition of the Stack and Frame sizes.
Experienced programmers can do an estimation which may work. But with small resources (RAM) a tuning

becomes necessary. If the Stack or Frame is too small this can lead to bad surprises, sometimes after weeks
or months if several circumstances meet.

A Stack or Frame overrun/violation mostly shows an irregular bevaviour of the program, calculation have
wrong results. With text displays destroyed strings are shown. This is because string operations and
convertizing is extremely stack and frame intensive.

Because there are no common values and also there is no formula for calculation, the necessary stack and
frame size must be determined by a Simulator session. But here the missing environment and reality is much
more a problem. Some procedures, functions, processes and tasks are only executed if certain external
events occur. This is not known by the Simulator. So it's the job of the application programmer to invoke all
these events in a proper manner. For example manipulating ports etc. in the Simulator.

The AVRco Simulator not only checks all stack and frame operations during a simulation run but also records
the maximum (peak) values separately for all existing stacks and frames. After a substantial simulation run

these informations can be displayed in two ways. Either clicking the

state button of the Stack/Frame window or by the view Process states item of the Windows menu.

EA Process +Stack+Fran || Properties | Windows Help Then the dialog below
opens which shows a good
"""""" Frocess ﬂ EE v Toolbar EJE_ overview of the stacks and
........... ||‘I.I1.ﬂ~.IN FROC Arrange icons v Iew . R
= — ——— frames used in this app.
Stack Frame v SEUpER
A e~ leder leont = Include ¥ work Registers Coda With a long and indeepth
w Processes CF simulation run a peak value
oz14 01 bzce 03 v Disassembler P¥ can be used as a good
0213 &8 0zCs  &C v Code memory gi maximum value.
nz2lz o7 0zZc4 20 v Daka memary CF
ozll1 0z DzCs 0z v Watches ity But to be absolutely sure
ozlo 0o oDzcz 09 v Ports iES and for security reasons this
: OEO7EE | hould be i d
0z20F 40 0zZCcl a0 v Peripherals 4 value shou e Increase
0Z0E 40 0zc0 30 _ 0 upto 50%
By view Trace

ozo0p 0z ODZEF 30 _ 4

view Process statn%; 1
020c 4D OZBE 30 SysTickfScheduler timings NEQ795
D20E 06 OZED 30 1 2
0204 00 =i OZEC 37 =i

- -

test Task 5 idle 2 94 5.875us 0% 2 u]
Johl Process 2 3 idle 3 663036 41.44m= V4% =] o
IDLE FROC Process ——- |-—— inactive 0O u] 0.000s 0% u] u]

Process state

E-LAB Computers

Simulator - 4.33



AVRco Tools

=R E]

4.6 Frame and Stack check at runtime

Big processors of the 16 and 32bit range have an internal hardware check to catch stack and frame
overflows at runtime and then notify the app by a trap or interrupt. But unfortunately the AVR doesn’t have
this beneficent feature.

It's possible to implement this in software but first tries showed that the code size is increased by upto 50%
and the application slows down in the same range. The reason for this is that each PUSH and each POP
needs a stack pointer check, otherwise this check will be useless. The same is also true with the
FramePointer R28/R29.

But with a few small tricks there is a practicable way. It's much less secure as a continously hardware or
software check but it's useful.

The checks can be implemented in 2 steps. The first simple one is a system function which exactly knows
where each stack or frame begins and where it ends. With a call of this function it checks the entire
stack/frame area starting with the lowest address (top-of). An unused byte must show a “00“. If this location
was used by the stack/frame so it mostly shows a value <> “00“. But this is not absolutely true because there
could be a push of a “00“. So the function checks all memory locations of this stack/frame until a value <>
“00“ is read. The count of the zeros found determines the obviously unused area. The function returns this
value as it's result.

Check of the stack and frame of the main program with a multitasking and non-multitasking environment:

Functi on Get St ackFree : word;
Functi on Get FraneFree : word;

Check of the stack and frame of processes and tasks in a multitasking environment:

Functi on Get St ackFree(prcs : Process) : word;
Functi on Get FrameFree(tsk : Task) : word;

4.6.1 Extended stack and frame checks

An enhanced version places some patterns (word) at the bottom end of the stacks and frames. If this word
has changed so it's clear that an overflow happened. In this case the function always returns with “-1“,
Otherwise the count of the unused bytes is returned. A small driver must be imported.

From System I nport Longlnt, StackChecks, ..;

Check of the stack and frame of the main program with a multitasking and non-multitasking environment:

Functi on CheckStackValid : integer;
Functi on CheckFraneValid : integer;

Check of the stack and frame of processes and tasks in a multitasking environment:

Function CheckStackValid (prcs : Process) : integer;
Functi on CheckFraneValid (tsk : Task) : integer;

It must be clear that that it's impossible to detect the reason or location which caused the stack or frame
violation. But at least the presence of an overflow can be determined.

An common problem with all such kind of tests is always “what to do" if such a problem happens? A screen
message like a PC is impossible because it's not present and will not work because in most cases the
system is instable caused by the stack or frame overflow.

But with an ICE this still makes sense. The memory can be read out and assembler single stepping still
works. But at least the knowledge that a stack or frame violation happened is very useful.

4.34 — Simulator E-LAB Computers



AVRco Tools

=R E]

4.7 JTAG/OWD Debugging

implemented with great support from Victor Chekrygin

Take care with the programmer software: you must also select the JTAG mode at
"Options — Programmer options"!

4.7.1 UpLoad /DownlLoad

An UpLoad/DownLoad of the data takes up to one minute. This is mainly caused by the primitive debug
machine of the controllers.

This is the reason why, at a breakpoint, not all data are automatically refreshed.
If you need the actual data you must click the green arrow in the toolbar.
Hint: this button is only available if JTAG debugging is active. A=

This click opens the window below:

E-LAB ITAG Debugger L x|

—Upbosnload via JTAE

RE izter I.J mnwnlnaﬁ

dnfoad | [ITIOCCC || K IHFII R E

[Zrarea LpiDovenlosd:

oiaad & | [TTTCCCCOOOOOO0MOIMOOAOOIIIIIOOT A welead
EEpram UpRowwnload

anioad & | [TDOOOOOOOOOOOOOOOOOOOCOOR00000000. ¢ uelosd
[Crata UpiTowinlosd

driosc & b [TTTOOOCO0O00OCCOOOOCTIOCCOCTCCNT, e ustos
¥Data UpBoenwriioad

dnfoad | [OOOCCCOOOCOOOOOOONCOCOOOCTC - uslesd

~Upload and Updaste mode &t breaks—

I Registers:
I Poide + Upluad.l
Wtk =
r e I'L Qlcusel

You can select the different areas to "Upload" (from controller to simulator) or to "Download"

(from simulator to controller).

By the "check-boxes" at "Upload and Update mode at breaks" you can select an automatic upload
of the registers/ports/watches. Note that the complete RAM ($IDATA) is not updated by this.

By a double click on the register names in the window "work Registers" you can selectively update
individual registers and change their values.

A double click in the window "watches" updates all watches. A double click on a complex variable
(array / structure) updates the whole variable.

E-LAB Computers Simulator - 4.35



AVRco Tools

=R E]

4.7.2 Hardware Breakpoints

=

With activated JTAG debugging there is another button in the toolbar available: |—|

It opens a window to define the max. 3 hardware breakpoints in JTAG mode (the maximum number is
restricted by the implementation of the debugging system inside the controllers).

x

-Speu:ial JTAG Breakpointz in 10 and RAM:

“Breakpoint types——— ) Breakpoint modes—
i Gstandard, noextended | | 7 only st read
+ 2 standard, 1 extendec ™ ol st write
" 1 standard, 1 masked (%t read or write

~Breskpoint address——— —Breakpoint mask

" uze HEX address | HEX mazk: FFEFE
¥ uze VAR name

HEX st 04Dl —

V.ﬁ.HIS siEs| &l | Set Breakpoirt

—active Breakpoirts

@ 5P
4 Br2

" Bie f|_ Close

"Standard" breakpoints are unrestricted settable in program code.

"Extended" breakpoints are stopping the simulator at a memory access. "Breakpoint modes" select the
different accesses.

"masked" breakpoints are also concerning the data memory. You can select a whole area of addresses. A
binary 0 in the mask marks a "don't care" bit.

e.g. in the upper example (if you select "1 standard, 1 masked"):

addr = 04D1, mask = FFFF one break condition at 04D1

addr = 04D1, mask = FFFE (bit 0 = don't care): 2 break conditions at 04D0 and 04D1.

4.36 — Simulator E-LAB Computers



AVRco Tools

=R E]

4.7.3 Tips and Notes for JTAG Debugging

take care to keep the firmware on your ISP on the actual state !
Most enhancements need a firmware upgrade.
(Firmware Download/Update into the ISP-USB ICE only with external 5Volt supplied to the Target plug!)

The update wait time after a Break or a Step depends of the count and complexity of the watches.

Many watches, much waiting.

The automatic display of local vars in Procedures/Functions can be disabled to save time (right mouse click
into the watch window).

The JTAG Debugger optional supports Stack and Frame overflow checks with function calls.

But this is only possible after a single step, a program stop or a breakpoint.

Because also this causes a big data traffic between the PC and AVR this checks are disabled by default.
Enable it in the "Local watch" window with a right mouse click.

Support the debugger in it's heavy duty job and write only one Pascal statement into one source line.
It will respond with a faster stepping rate.

All files of the system must be synchron in order to do a safe JTAG debugging.

Any change in the source code ohne without a re-compile and Flash download can resulkt in a very strange
behaviour of the debugger.

In the setup dialog of the JTAG-ICE there is a control element for the USB-Port. It supports fine tuning some
PC dependant Timeouts.

The control should be set to long with the first tries.

After having stable connections it can be moved into the short direction.
But the speed improvements are not very high, so please do not overrun the USB connection.

4.8 Compiler Switches and the Consequences

4.8.1 {$D+} {$D-}

Enables / disables debug informations. If disabled the following statements can not be processed in single
step mode.

4.8.2 {$E+} {$E-}

If disabled the following statements are not executed by the simulator. E.g. can be helpful at long mDelays

E-LAB Computers Simulator - 4.37



AVRco Tools

=R E]

4.38 — Simulator E-LAB Computers



AVRco Tools

=R E]

5 Lookup and Interpolate

5.1 Nonlinear functions of sensors

Many sensors and other functions show a nonlinear curve. This means that the relation between an input
value and the corresponding output value is not linear. Examples: PT100, PTC, NTC, light-detectors, and
also diodes. This is only a very small count of nonlinear sensors. Normally the measure result has a fixed
relation to the external events. The temperature for example. But in many cases this relationship is not
linear, but logarithmic, cubic etc. A PT100 shows a resistance of 100 Ohms at 0degC, at 50degC 1240hms
and at 100degC 1430hms. The relation between temperature and the resistance value is nonlinear.

There are two ways to calculate the temperature from the resistance:
1. With a proper formula, which mostly is a complex thing, one can calculate the the temperature which
corresponds with the resistance.
2. Build a so called LookUp-Table. Insert in steps resistance values and the related temperature
values. Access the table with the resistance value as an index. The result is the temperature. If the
input value reaches from 100 to 200 there must be 100 value pairs in the table. More difficulty is a
large span of the input values (0 to 1023). Then the table must have 1024 entries.

5.2 Linearising

The herein used implementation is table based, with paired values (search/result). The LookUp algorithm
searches with a known value in the table until either this value is found or this argument fits between
two values. The searching is done with a binary search function for best speed results.

If a proper value(s) is found it will be linear interpolated. These method allows short tables, dependent

of the required accuracy. If the count of the value pairs is relative high, the linear interpolation results in an
acceptable accuracy.

5.2.1 System Functions:

function InterPolX(const LookUp : pointer; X : integer; var y : integer) : boolean;
function InterPolX(const LookUp : pointer; x : longint; var y : longint) : boolean;
function InterPolX(const LookUp : pointer; x : float; var y : float) : boolean;
function InterPolY(const LookUp . pointer; y : integer; var X : integer) : boolean;
function InterPolY(const LookUp : pointer; y : longint; var x : longint) : boolean;
function InterPolY(const LookUp : pointer; y : float; var x : float) : boolean;

The pointer must point into a table in the ROM. The second argument is the search value. It's type defines
the operation (Integer, Longlint or Float) of the functions. The result is placed into the location of the third
argument, if the function was succesful.

E-LAB Computers LookUp Table - 5.1



=R E]

AVRco Tools

5.3 LookUp Table definition and import

The parameter const

LookUp : pointer which must be passed to the functions, is a Pointer which must

point to a ROM constant table. The table should be defined in this way:

const
I nt LookUp
/] size point.

LongLookUp
/1 size point.

Fl oat LookUp :
/1 size point.

array[1l..(size * 4) + 3] of byte = Fil eNang;
X point.y of integer, 3bytes info
array[1l..(size * 8) + 3] of byte = Fil eNang;

X point.y of longint, 3bytes info
array[l..(size * 8) + 3] of byte = Fil eNang;

X point.y of float, 3bytes info

The array definition is only a place holder for the binary file which must be loaded. The parameter Size
defines the count of the x/y-datapairs and the following multiply factor (4 or 8) is the count of bytes needed
for one datapair (sizeOf(integer), sizeOf(Longlnt) or sizeOf(float)). The three bytes info contain the used
data type and the count of data pairs.

Example for non-linear sensors which are predestinated to be used with a Lookup Table linearisation.
There is also a sample program in the AVRco installation using this schematic/hardware.

(=]

PFE_AN2

Pr_AND

PORT DF |27
EVABOARDH | S

EXPAND

507

ab
AR
4000044

Eag & &
E-LAB o

E-LAB NonLinear Analo

Norn-Linear Sensors I I

oI

COMPUTERS Tel. 07268/9124-0
074906 Bad Rappenau Fax 07268/9124-24

Copyright by E-LAB Revl
Datum: _14-Mar-2004
[Nome. R Homang

5.2 — LookUp Table

E-LAB Computers



AVRco Tools

=R E]

5.4 Creating the LookUp Table with CurveGen

As a support tool for the creation of the lookup table a Table Generator CurveGen is included. With it's help
one can interactively and graphically create a curve and then store it into a binary file which can be imported
into the application.

A sample program can be found in the Demos directory as "AVR Interpol". Here an optical distance/proximity
sensor (Sharp) is sampled by the ADC and then linearised. The result is displayed in cm. A datasheet can be
found in the DOCs directory.

5.4.1 Program start =
The program CurveGen.exe has to be started from the IDE PED32 with the button
| Tooks Info or with the menu item curve Editor on the left. After setting all the needed
CharSet Editar parameters and setpoints a binary file can be created which is necessary for the
LCD Char Editar interpolation and lookup in the application.
Bitt ap Editor . . . ) . .
Curve Editar CurveGen is absolutely interactive and graphic based. Because of this there is
always an immediately reaction and view when parameters are changed. The
Flazh DownLoader curves between the supplied setpoints are calculated with a special spline-like

algorithm. So it's also possible to generate a stairway curve which is impossible
with a pure spline.

ﬂE-LAB Curve Generator ﬂﬂ
Vot [ avrinterpol | 2| ouse
200 T T performes
! E I none
275 5 5 drag point |
2 50— rotate point |
| | edit point |
225 measure |
insert point |
2.00- : :
: | append pnintl
1.754 i i delete point |
| i f)
1.80— i ! =
| | Load Project
. .............. E
' [ Config disp
1.00— | i =y
: : (L)
: ! Config output
0.75- E : Ely
| | =
! i Save Project
0.80- : : Eiy
| | =
| | Save Proj as
0.25- : | _
i ; ]
0.00- : I I I I I I I I : I I —Etnre cune
1] 10 20 a0 40 50 1] 7o a0 S0 100 x Exit |
[#: 0.0cm ['f: 0.0%olt | | C =

The above picture shows a screenshot of CurveGen with the project AVR Interpol loaded.
The two vertical red lines define the start and end point for the table generation.

E-LAB Computers LookUp Table - 5.3



-lal

m

AVRco Tools

The red squares show the predefined set points.

Mouze
PEMOrmS

hone
drag point
rotate paint
edit point
measure
insert point
append point

delete point

BARLERE

o7

FProject admin

X4

Config disp

S
Iatal
Config autput
Ely
=
Save Project
Eiy
=
Save Proj as

Store Curve

X Eit

E-LAB CurveGen Spline Projects

ol
AVE InterPolF
AVR Interpoll
avt problems
AVE Processe
TestProj

The upper half of the picture at left shows the properties which can be choosen for mouse
clicks and mouse moves.

None means that the mouse clicks and moves have no affect to the display.

Drag point moves a clicked red set point as long as the mouse key is pressed.

Rotate point allows a click to a point and then manipulate the point’s direction (vector)
and weight by dragging the white attribute circle.

With edit point a click to a set point opens a dialog where the exact position (x/y) of a set
point can be edited.

Measure allows to move with the left or right mouse button two cross hair cursors which
are used as measuring points. The result is shown at the bottom of the display.

With Insert point additional set points can be inserted with mouse clicks between two
existing set points.

Append point appends with each mouse click a set point to the last right point.

With delete point an existing set point can be deleted.

Project admin opens a dialog described later on below.

Config display opens a dialog for defining the display’s parameters like scaling, partition
etc. See description below.

Config output opens a dialog for editing the output/export parameters like data type
(integer, longint etc). Description see below.

With Save Project all project data and setup is saved in the project file ProjectName.inicg

With Save Proj as the current project and it's parameters is saved in a new project file.

Store Curve opens the store dialog (see below). A text field shows the generated output
in a readable form. So a preview of the generated lookup table is possible.

Exit closes the program and exits.

x| The_ project admi_n dialog_offers
besides the loading of existing

Program projects also project deletion
c”“f:i’t':l‘:md and creation of new projects.
Thafes_ With a double click onto a table
for Delphi | entry this project is loaded.
T With a click to the New project

button a dialog appers for
editing the new project’s name
= and it's working directory.

Delete project

=

Load praoject

x E it |

| Mew project

This new project now has some
default settings and a small
count of set points. All
parameters and setup values
now must be changed to fit to

5.4 — LookUp Table

the sensor’s behaviour.

E-LAB Computers



AVRco Tools

E-LAB Curveaen Dizplay Setup

X

Thales

This tool was created with

the technizal Components library for Delphi

—w-FParam —y-Param
i+ Linear ¥ Linear
"~ Logarithmic " Loganthmic

| 12 parts [B] Grid
I-S'El— rnirt alue
I'IEI:I— ma= alue
Iu:m—

IInite M ame

Cancel |

|12 parts [B] Giid
ID— it alue
IE— maxalue
Iﬁ‘-“":'It Units Mame

E-LAB CurvelGen export setup x|
~Exported type——— ~Range

 Byte Start Walue IE

S ErdValue |52

= Langlnt

i~ Float Puoirt I:::uuntI'IEIEI

—Factorz and Offzet

FAfalues muliply Y alues mulkiply

[10 2045

wAfalues offset 4 alues offset
G [0
Abbrechen

E-LAB CurvelGen listing output

=R E]

The display setup dialog is used to set scalings and
partition for the display.

The setting must be done separate for the x and y
axis. The scalings can be linear or logarithmic.

The scala partition must be selected so that the text
of the scale shows no rounding errors.

The minimal values of the scale are related to the
bottom left corner and the maximal values to the
upper right corner of the display.

The Export dialog on the left serves to edit
definitions how the binary file must be build.
The data type is defined with Exported type

With Ranges a part of the display’s curve is
choosen. This range is displayed by vertical red
lines. Start and End Value is only related to the x-
axis. Only these points of the curve are exported
which reside between these two limiters.

The value point count defines value pairs within the
selected range should be exported into the binary
destination file.

The x and y values can be scaled and offsetted for
the export. The calculation will be done with the
formula:

val: = (val - offset) * factor

x|| The Output dialog shows all relevant

A bart | &5 Frint hardcopy |

E-LA4F Computers CurveGsen Look-TUp table generator =
Project : avr interpol
Date 19.11.00 13:39:47
Format Integer
Start walue HE=
End walue 82
Foale factor X 10
Soale factor ¥ : 2Z04.¢6
Offset X Hamt
Offset ¥ Hams
Generated points : 100
Index ®=value v=walue
1 io00, 491
2 10z, 452
3 105, 470
4 110, 457
5 115, 442
3 121, 426
7 127, 410

settings, parameters and lists the
generated lookup value pairs These list
can be printed out.

With the Store button the binary file
ProjectName.crvg can be written. This file
then must be imported into the application
source like described above.

E-LAB Computers

LookUp Table - 5.5



AVRco Tools

=R E]

5.5 Properties of CurveGen

Precision:

This program is based on a special spline function. Spline has the property that the generated curve always
touches the set points. This results in the consequence that each error in the coordinates of the setpoint
atleast at this point becomes effective and also somewhat weaker in it's nearness. Because of this the
precision of the interpolated values depend heavily on the precision of the set points.

Less important for the precision is the count of the set points. With ,normal“ quadratic, cubic or logarithmic
curves a few points in the range of 5..20 are sufficient. The more komplex a curve is the more set points are
necessary. An extreme one could be a logarithmic curve with linear parts and stairways.

Curve shape:
By the count and position of the set points the shape of a curve normally is well defined. But a new curve in a

new project still has a strong concentration of the point’s attributes and directions to the point itsself. This
easily can be seen because the parts between the points are absolutely linear.

These behaviour is not what we expect normally. A curve should have a curve shape ©. Because of this the
attributes of the set points must be adjusted in to proper values. This must be done with the mouse and the
selection rotate point. With a pressed left mouse button the point must be dragged.

But the point itself isn't move but the visible attributes which are shown by a white curcle. With dragging of
such a circle the weight and direction (vector) of the point is changed. The longer the distance between the
point and it's white circle is the more the curve is pulled ib this direction. This setup also must be done
carefully in order to get a curve which is as similar as possible to the origin curve. But don't fear, the human
eye is very well suited to adjust this.
Ambiguousity: Curves must be unambiguous from the point of view of the used LookUp
parameter. In the leftside picture there are two x-values for one y-entry value. Which of these
ﬂ values will be returned is uncertain. The similar is true for the x-entry into such a curve. Later
implementations of the AVRco LookUp functions support the area limitation for a LookUp so
this problem can be handled then.

Generating:
If the curve is completely defined the binary file can be generated. But before this the scaling factors, offsets

and the count of the needed curve points must be defined. (Export dialog)

The section of the curve can be nearly arbitrary. But it makes no sense to set the limits beyond the x-start
and end values. In this case only points within the existing x-values of the curve will be exported. If the
section is too small propably the interpolation results in inaccurate values.

The offset and scaling factors must be defined in a way that later on the program generates usable values. If
for example the input value is read from a 10bit AD-converter, the result from ((curve-y-val — offset) * factor)
should be within 0..1023. Similar is true for the x-value. The values of offset and factor strongly depend of
the total gain of the system. This means the gain from sensor to OP-amps upto the AD-converter and its
resolution.

The count of points to generate is defined by the dialog field point count. Here a compromise is necessary.
As an ideal a huge count of points eliminates (or nearly does so) the interpolation and therefore reduces the
errors found in the linear interpolation. But this results in huge table with an according long search time. How
much points are needed can be found out only with tests with the hardware. An upper limit is the resolution
of the data gathering system, eg. AD-converter. With 10bits there are only upto 1024 possibly entry values.

Basically there is one question when the precision has to be checked: which part of the system is the most

unprecise one. In most cases the sensor is that one. If this device has large tolerances it makes no sense to
trim the software precision to 0.1%.

5.6 — LookUp Table E-LAB Computers



AVRco Tools

=R E]

6 Source-Code-Control-System — SCCS

A problem which is always present with software development is the maintenance of the sources, or better
said, the rewinding of the current project state back to the state of date mm.dd. This can become necessary
if there is the need to make some changes to an old version of the project which is thought to be history, no
more used etc. Also sometimes it is important to switch back to a certain previous version if the current
version has accidently moved to a direction, which is obviously wrong (ill, faulty, wrong strategy).

To solve these problems there are some so called Version Control Systems available which are absolutely
not cheap. These systems are very complex and working with powerful data bases etc, which results in high
costs. But reducing the problem to the essentials, don’t use data bases and complexe operations, this job
can also be done with simpler tools by accepting some limitations.

6.1 Overview E-LAB Source-Code-Control-System

The solution integrated into the IDE PED32 from E-LAB is not comparable to the available professional
(costly) tools but it does it’s job and is very useful for maintaining the projects build and controlled with the
PED32.

The properties of the E-LAB SCCS are:

e The currently loaded version of a project incl. all selected Unit and Include files, the project’s
setup etc. can be stored (freezed) with a button click.

o All store operations target a specific directory including datums and time informations.

e Thefiles are not compressed nor keyed so they can be read at any time with a text viewer.

e Each stored version can be viewed in a list and can be restored either into it's origion directory or
any other directory. The project then is useable without any further interventions.

o All operations are done within the IDE PED32. No external programs are necessary or executed.

e Backups are created on demand. There is no automatic protocolling of file changes.

6.2 Strategy of the E-LAB SCCS

All backups (versions) are stored in the subdirectory _SCCS__ below the project’s directory. Here each
version has it's own directory which name consists of sccs_ +Date +Time. Example:

sccs_ 020628 1729

The part 020628 is the date 2002.06.28 and 1729 the time 17:29. Theoretically it is possible to do a store
operation every minute. This directory contains all files which were selected for a version backup of the
project.

Files which must be copied for a version backup must be selected in a dialog. An automatic include of all
existing files of the project is not possible. It is not necessary that that a selected file is located in the
project’s directory, there are no restrictions. But in this case the system has a different strategy in case of a
version restore.

If a restore operation is executed and the user decides that the target directory must be the origin directory of
the project, all stored files are copied to their origin locations and already existing files with the same name
are overwritten.

If the target directory should be different from original directory all stored files are copied into this directory,
regardless of the origin location.

With both cases some ntries in in the project’s control file ‘dddd.ppro’ will be changed, if necessary

E-LAB Computers SCCS-6.1



AVRco Tools

=R E]

How to...

All operations of the SourceCodeControlSystem (SCCS) are related to actual loaded project.

6.2.1 Version store

If the actual state of a project must be stored as a version the concerned files must be selected at least one

time. This must be done with the @| button which opens the dialog below.

Add/Remove an Unit,/Include file ko Projec E
Check box to include file to the SourceCodeContralSystem
Froject —
V¥ Froblems s
Units create Lnit
V¥ help
IV clock [
¥ control add Uit file
¥ TemplzCz
¥ EcovB3 [
= Craph Unit

add Include file
Includes _—

E remnave file

(2, open file

E wit

With add Unit file or add Include file a
file is added to the project. This file can
be reside anywhere, but Unit files must
have the extension .pas and Includes
the extension .inc

With remove file the highlighted file is
removed from the list.

Now the project administration knows
which files belong to this project.
Sometimes it makes no sense that all
these files are included also into a
version backup, so the files which
should also included for version
backups must be separately selected
with their checkboxes.

Now all setups for the version backup of this project are complete. In most cases there is no need to change

this setup in the future.

Project System IDE Teols Infe If the current state of the project should be stored as a version the menu item

Load Praoject
Edit Project
Mew Project

Project Infarmations

Project options {DEFIME}

Source Code Conkrol System

6.2 - SCCS

Source Code Control System opens the SCCS dialog below.

E-LAB Computers



AVRco Tools

Source-Code-Control-System [A¥YR Problems]

Version history Contents
Current available backups Included files
2002.06.24 18:35 Project
2002.06.24 1838 Froblems
2002.06.24 20015 IUnitg
2002.06.25 10:00 help
2002.06.25 18:26 clock

contral

M TemplzCz

EcovB3

Includes

=R E]

This dialog shows all known
x|| previously stored versionsof the
actual loaded projekt. A click onto
an entry in the left list field shows
it's contained files in the right field.
Each backup contains an Info
save version which can be viewed with the
— | view info button. Each included
3 file can be viewed with view file
restare version| | button. With the button save
—— | version the actual state (version)
$ viewinfo | of the project is stored into a new
sub-directory including date, time
ime WETE | and all selected files. Then an
editor window pops up where
additional informations and user
comments can be written which
are stored into the info file.

The new additional version is then

6.2.2 Restore a previous version

listed in the version list on the left.

In order to restore a previous state (version) of a project the button restore version in the dialog above must

be clicked. The dialog below pops up:

Select Directory

Directory Mame;
Ic:: SWPROJEKTENPazcal_schAWR\Problems

It initially shows the origin directory of the
project.

Basically there are two ways to proceed with

Directories: Files: [#.7]
= ot AWF Problems.izpe
(= PROJEKTE AR Problems pdpro

AR Problems. ppro

i’ the restoration.

Fazcal_ac . .. .

EB e ’:&F‘DIPDE';';;“;FF‘“EN 1. Restore into the origin directory
P e lack ' 2. Restore into a different existing or
g Problems Clocr. paz ;I .
= aees cantral.oas new directory.
£ Graphic Dirives:

EET =]

0K I Cancel |

E-LAB Computers SCCS-6.3



AVRco Tools

=R E]

6.2.2.1 Original Directory

This is the simplesty way. Click the Ok button of the
directory dialog.

The information dialog on the left appears.
The Yes button starts the operation, the Cancel button
aborts all.

6.2.2.2 New or different Directory

|| Inthe topmost edit field of the above directory dialog the
desired path and directory of the target must be edited.
® The specified dirsctory doss not exist. Create it? The quit with the Ok button. If the selected directory

doesn't exist, the dialog on the left appears. Click the Yes
button to accept the directory creation.

In both cases the restore and copy operation must be
accepted with dialog on the left.

Cancel

Project Name x| Because a completely new project is created now using the stored
version of the actual project, this new project must have an unique
name. The system suggest a new name in the left dialog. This
AR Problems_1 name can be changed by the user.

Enter new Project Mame:

Ok Cancel | And then also this operation is finished.

6.4 — SCCS E-LAB Computers



AVRco Tools

=R E]

7 Flash Down Loader / Writer

The installation of AVRco contains a PC-based DownLoader Program FlashLoader.exe. This is integrated
into the IDE PED32.
A click to the button starts the g:fl tool.

This tool assumes that the Target Monitor communicates through a serial interface. With the help of this tool
a new application can be downloaded and programmed into the target system if the Loader Monitor is
installed there. It's clear that the Loader in the target must be activated at this time. In the example program
..E-Lab\AVRco\Demos\SelfProg\... this is accomplished by pressing two special buttons of the keyboard.

The PC-tool can also be used independent of the IDE or Editor. Then there are two possible (optional)
commandline parameters:
1. FileName with path (optional). Filename can be a Hexfile (.hex or .eep), a proj-File (.ppro), a Pack file
(.pack) or Encr File (.encr).
2. FlashLoader ID (optional). The parameter starts with a % and consists of the decimal ID 0..65536. If this
parameter is present the program raises a warning if the preset value differs from the value (ID) in the
target system.

If a Flash download is started the tool at first erases the last page below the BootLoader. If there is any ID so
it becomes invalid and gets valid again only if a download was successful. The validity can be checked in the
Bootloader if the reset of the CPU immediately jumps into the Boot. See the Example below.

The program uses the following communication protocol:

FlashLoader Commando List

? Host requests Loader ID.
Loader responds with
FD FlashDownLoader

A Host sends page adr in word representation. All Flash action rely to this Page

aal page addr loByte

aa2 page addr hiByte

aa3 if the target CPU has more than 128kBytes Flash this page extend byte must be send
Loader responds with
CR Command executed

B Host sends EEprom adr in byte representation and EEprom data (byte).
aal EEprom adr loByte
aa2 EEprom adr hiByte
data 1 Byte into EEprom
Loader programs this byte into the EEprom and responds with
CR Command executed

C Host sends EEprom adr in byte representation.
aal EEprom adr loByte
aa2 EEprom adr hiByte
If an (optional) password is given (see below) the Host must then send the correct password:
pwl Password loByte
pw2  Password hiByte
Loader reads the EEprom byte from this address in the EEprom and sends it back as the response

E-LAB Computers Flash DownLoader/Writer - 7.1



=R E]

data

pwl
pw2

aa
wwl
ww?2

AVRco Tools

Host stores a new Page of Flash data into the Loader’s buffer

following (ps x 2) bytes = Pagesize x 2 (mega8..meg16 = 128bytes)

Loader stores this Page into it's array and builds an 8Bit checksum by adding all bytes.
Loader sends the computed checksum as a result of the operation to the Host:

cc Checksum

Host requests erase of the actual Page
Loader erases the actual Page in the Flash and responds with
CR Command executed

Host requests Loader Info.

Loader responds with

I Info ID = Loader-ID, see below

idl hiByte Processor ID

id2 midByte Processor ID

id3 loByte Processor ID

ps words pro page

bsl Bootblock start addr lobyte \

bs2 Bootblock start addr hibyte / = Bootblock start addr in word count

bs3  Bootblock start addr extbyte / = Bootblock start addr in word count if Flash > 128KB

Host request programming of the Loader’s buffer into the Flash

Loader overwrites the actual Page in the Flash with the content of it's buffer. A verify is not
implemented. This can be done by the Host with reading the Flash page into the Loader’s buffer by
the R-Command and then upload the content of this buffer with the U-command.

The Loader responds with:

CR Command executed

Host requests reading the actual FlashPage into the Loader’s Buffer.
Loader copies the actual Page from Flash into it's buffer.

The Loader responds with:

CR Command excuted

Host requests an upload of the content of the Loaders buffer

If an (optional) password is given (see below) the Host must then send the correct password:
Password loByte

Password hiByte

The Loader sends (ps x 2) Bytes = Pagesize x 2 (mega8..megl6 = 128bytes).

data

and then an 8Bit checksum, build by the addition of all bytes sent.

cc Checksum

Host sends a relative page addr in word representation. Then a word follows which the Loader must
write into it's buffer with the use of this address

page addr relative (Byte!!)

loByte

hiByte

Loader responds with

CR Command executed

End of communication. The Loader Monitor jumps to the optional user supplied procedure
FlashLoaderExit. If the system doesn't find this procedure the loader does a JUMP to 0000h if it
terminates.

No response from the Loader.

7.2 — Flash DownLoader/Writer E-LAB Computers



AVRco Tools

=R E]

Loader identification

In most cases the Loader Program is programmed once into the target CPU and remains unchanged at least
for a long time. Because of this it's a good idea to place the hardware revision (or similar) of the board or
system into it. This 16bit number can be interrogated before a download to make sure that the downloaded
firmware is executable on this hardware. This number is included into the machine code as an immediate
constant when the BootLoader is generated. This must be done by the definition of a global constant named
~,DownLoaderID":

const
DownLoaderID : word = 010213;

If this constant is not defined this value is stored with $0000 in the Loader.
The ID-number can be recalled at runtime from the loader using the command ,i".

i The Host requests the DownLoader ID.
Loader responds with

wwl ID-loByte

ww2  ID-hiByte

There are upto 4 possible ID-words which then are sequential uploaded with the i-command:

const
DownLoaderID : word = $1234;
DownLoaderID1 : word = $5678;
DownLoaderID2 : word = $9ABC;
DownLoaderID3 : word = $DEFO;

Security
In order to disable unauthorized read back of the Flash or EEprom content through the Loader there must be

an optional password defined:

const
DownLoaderPWD : word = $1A2B;

If a password is defined the upload tool must always provide this password if any upload command is used.
Furthermore it makes sense that a new firmware is not shipped in the hex format but either in the Pack or

better in the Encrypt format of the E-LAB programmer tool. The AVRco Downloader supports also these
formats.

E-LAB Computers Flash DownLoader/Writer - 7.3



AVRco Tools

=R E]

7.1.1BootLoader Example
Program SelfProg;

{ $BootRst $01F00}  {reset jumps to here}
{SNOSHADOW}

{ $W+ Warnings} {Warnings off}
{$DEBDELAY}

Device = megal63, VCC=5;

Import SysTick, FlashWrite, LCDport, MatrixPort;
From System Import ;

Define
ProcClock = 8000000; {Hertz}
SysTick = 10; {msec}
StackSize = $0020, iData;
FrameSize = $0010, iData;
LCDport = PortA;
LCDtype = 66712;
LCDrows = 4 {rows}
LCDcolumns = 20; {columns per line}
MatrixRow = PortB, 4; {use PortB, start with bit4}
MatrixCol = PinB, 0; {use PinB, start with bit0}
MatrixType = 3,4 {3 Rows at PortB, 4 Columns at PinB}
Implementation
{$IDATA}
}
{ Type Declarations }
type
KeyShift = (F5, F2, arrRight, clear, F4, F1, arrLeft, point, arrDown, arrUp, F3, shift);
{ }
{ Const Declarations }
const

DownLoaderID : word = $1234;
/I DownLoaderID1 : word = $5678;
/I DownLoaderID2 : word = $9ABC;
/I DownLoaderID3 : word = $DEFO;

strC : string = 'Hallo';
KeyLookUp : array[keyl..key12] of char = ('3','9', '6', 'E', '1', '7", '4', 0", '2', '8', '5', ' ");

BootCheck[$3DF8] : word = $AA55; // last page below bootloader

7.4 — Flash DownLoader/Writer E-LAB Computers



AVRco Tools

=R E]

{ }
{ Var Declarations }
{$IDATA}
var

bb, x, y . byte;

bool : boolean;

ch : char;

WW :word;

KeyLookUpV : array[keyl..key12] of char;

{ }

{ functions }
{$PHASE BootBlock $01F00}
Procedure BootTest;
begin
// SSSSSSSDOOSSSSSSSOSDSSSSSSSOOOSSSSOOOOSSS
/I the following code makes only sense if the Reset jumps to here
/I if the Flash constant “BootCheck” is defined we can check here for a valid last download
: check in Flash

ASM,;
LDI _ACCCLO, SelfProg.BOOTCHECKF AND OFFh
LDI _ACCCHI, SelfProg.BOOTCHECKF SHRB 8
LPM _ACCA, Z+
CPI _ACCA, 055h
BRNE BootTestX
LPM _ACCA, Z+
CPI _ACCA, OAAh
BRNE BootTestX
; I/ normal program start
JMP 0000h;
BootTestX:

; Il check failed, try to download
] <<<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
FlashDownLoader;

ENDASM;

end;

Procedure FlashLoaderlnit;
begin
ASM,;
; >> SERPORT Init <<
; >> Baudrate 19200Baud <<

LDI _ACCA, 018h ; Rx and Tx enable, polling
ouTt ucrl, ACCA ;
LDI _ACCA, 01%h ; 19200 Baud
ouT ubrrl, _ACCA ;
SBI ucrl, 2 ; 2 stop bits
SBI ucrl, O ; 2. stopbit=0
ENDASM,;
end;

E-LAB Computers Flash DownLoader/Writer - 7.5



AVRco Tools

=R E]

Procedure FlashLoaderRecv;
begin
ASM;
SBIS usrl, 7 ; Receiver ready?
RIMP AVR_SELFPROG.FLASHLOADERRECYV ; if not
IN _ACCA, udr1
ENDASM,;
end;

Procedure FlashLoaderTransm;
begin
ASM;
SBIS usrl, 5 ; Transmitter ready?
RIMP AVR_SELFPROG.FLASHLOADERTRANSM ; if not
ouT udrl, ACCA
ENDASM;
end;

Procedure FlashLoaderExit;
begin
ASM: JMP SYSTEM.VectTab;
end;
{$DEPHASE BootBlock}

{ Main Program }
{$IDATA}

begin
LCDcursor (true, false);
write (LCDout, strC);
mDelay (1000);
LCDclr;
LCDxy (2, 0);
write (LCDout, 'E-LAB Computers’);
LCDxy (3, 1);
write (LCDout, 'DownlLoad Test');
LCDxy (3, 2);
write (LCDout, 'press any Key");
LCDxy (0, 3);
write (LCDout, 'Result :');
LCDxy (9, 3);

Enableints;
loop
repeat until KeyStatRaised;

LCDxy (9, 3);
LCDclIrEol;

7.6 — Flash DownLoader/Writer

E-LAB Computers



AVRco Tools

=R E]

if ReadKey(Key12) then
case KeyShift (GetKeyRaised) of
F5 : write (LCDout, 'F5");
I
F2 : write (LCDout, 'F2";
I
arrRight : LCDout (>");
I
clear :write (LCDout, '‘BootTest');
BootTest;
I
F4 : write (LCDout, 'F4");

I
F1 : write (LCDout, 'F1Y%;

I
arrLeft : LCDout ('<');

I
point : LCDout ('.";

arrDown : LCDout ('V");

I
arrUp : LCDout (");

I
F3 : write (LCDout, 'F3";

shift : write (LCDout, 'Shift’);
I
endcase;
else
LCDout (KeyLookUp[GetKeyRaised]);
endif;
endloop;
end SelfProg

E-LAB Computers Flash DownLoader/Writer - 7.7



©1996-2009 E-LAB Computers
Grombacherstr. 27
D74906 Bad Rappenau

Tel. 07268/9124-0
Fax. 07268/9124-24

Internet: www.e-lab.de
e-mail: info@e-lab.de




	1 Overview
	1.1 AVRco Versions
	1.2 Manual Versions
	1.3 Structure of the Documentation

	2 Tutorial
	2.1 Introduction
	2.2 Quick Start –  Build And Test An Application - A Step-By-Step Introduction
	2.2.1 Download, Install And Start The AVRco (Demo Version)
	2.2.2 Create Your First Projekt
	2.2.2.1 Create A Program Frame
	2.2.2.2 Enter The Program
	2.2.2.3 Compile And Assemble ("Make") The Program

	2.2.3 Check The Program Using The Simulator
	2.2.4 Enter Some Own Messages

	2.3  Build An Application Of Your Own – Take a Deeper Look
	2.3.1 Create A New Project And A Program Frame
	2.3.2 Enter And "Make" The Program
	2.3.3 Some Nice And Useful Feature Of The Editor
	2.3.4 The Simulator – The Only Way To Success
	2.3.5 Get More Useful Informations

	2.4 The Internal EEProm
	2.5 Additional Ressources: The AVRco Documentation
	2.5.1 How to Find all related Informations?

	2.6 What Hardware Do You Need?
	2.6.1 Some additinional hints concerning the hardware

	2.7 What Do You Need To Program Your Hardware?
	2.7.1 How To Use The E-LAB Programmer (serial programmer, SPI mode)
	2.7.2 How To Set The Programmer Options For a New Project

	2.8 At A Glance: Multitasking
	2.9 Useful Links
	2.10  Appendix
	2.10.1 The AVRco Versions
	2.10.2 Source File Tutor01.pas
	2.10.3 The Mega8 Konfiguration Bytes


	3 Editor PED32
	3.1 Overview
	3.1.1 Introduction

	3.2 Projects
	3.3 Controls
	3.4 Syntax
	3.5 Menu
	3.5.1 File Menu
	3.5.2 Edit Menu
	3.5.3 Search Menu
	3.5.4 Project Menu
	3.5.5 System Menu
	3.5.6 IDE Menu
	3.5.7 Window Menu
	3.5.8 Info Menu

	3.6 Dialogs
	3.6.1 Project Admin
	3.6.2 Project Options
	3.6.3 Project Info
	3.6.4 General Options
	3.6.5 Macro Editor
	3.6.6 Character Table
	3.6.7 System Admin
	3.6.8 File Open
	3.6.9 File Save As
	3.6.10 Print
	3.6.11 Find
	3.6.12 Replace
	3.6.13 Goto Line
	3.6.14 TabSize

	3.7 SpeedButtons
	3.7.1 FileOpen
	3.7.2 Save
	3.7.3 Project administration
	3.7.4 Application Wizard
	3.7.5 Printer Dialog
	3.7.6 Cut
	3.7.7 Copy
	3.7.8 Paste
	3.7.9 Find
	3.7.10 Replace
	3.7.11 Undo
	3.7.12 Tile horizontal
	3.7.13 Tile vertical
	3.7.14 Cascade
	3.7.15 Split Window
	3.7.16 Calculator
	3.7.17 Project Info
	3.7.18 Alphabet
	3.7.19 Make
	3.7.20 Compile
	3.7.21 Link
	3.7.22 Post Processor
	3.7.23 Debugger
	3.7.24 Simulator
	3.7.25 Assembler
	3.7.26 RomSim/Prommer
	3.7.27 Tool
	3.7.28 Librarian
	3.7.29 DisAssembler

	3.8 State Bar
	3.9 Error window
	3.10 HotKeys and ShortCuts = Keyboard commands
	3.10.1 IDE and Syntax Help
	3.10.2 File and window operations
	3.10.3 Move caret
	3.10.4 Edit
	3.10.5 Search/replace
	3.10.6 Caret block commands
	3.10.7 Edit block
	3.10.8 Diverse
	3.10.9 Keyboard Macros

	3.11 Projects
	3.11.1 Working with projects
	3.11.1.1 Load Project
	3.11.1.2 Edit/New Project
	3.11.1.3 Project Path
	3.11.1.4 MainFile
	3.11.1.5 Application Wizard
	3.11.1.6 Template
	3.11.1.7 Project Options
	3.11.1.8 System Options
	3.11.1.9 Project Information


	3.12 Controls
	3.12.1 What is a control?
	3.12.2 Control Edit
	3.12.3 Syntax select
	3.12.4 Error File define

	3.13 Syntax
	3.13.1 Syntax edit

	3.14 Editor Setup
	3.14.1 Fonts, Colors, Backup and Fasthelp
	3.14.2 Character table
	3.14.3 Keyboard Macros

	3.15 Menus
	3.15.1 File Menu
	3.15.1.1 History
	3.15.1.2 Insert File
	3.15.1.3 Save Block

	3.15.2 Edit Menu
	3.15.3 Search Menu
	3.15.4 Project Menu
	3.15.5 System Menu
	3.15.6 IDE Menu
	3.15.6.1 Tabs

	3.15.7 Window Menu
	3.15.8 Info Menu
	3.15.8.1 Help IDE
	3.15.8.2 Help Syntax
	3.15.8.3 Info IDE
	3.15.8.4 Info Syntax
	3.15.8.5 About... and compiler registration



	4 Simulator / Debugger
	4.1 Introduction
	4.2 Overview – the Desktop
	4.2.1 the Header
	4.2.2 the Menubar
	4.2.3 the Toolbar
	4.2.4 the Working Area
	4.2.5 the Statusbar

	4.3 the Handling of the Simulator
	4.3.1 Menu Projekt
	4.3.1.1 Open / Save / Save as / Print / Printer Setup / Close
	4.3.1.2 Reload / Reload EEprom

	4.3.2 Menu Breakpoints
	4.3.2.1 Show list
	4.3.2.2 Reset all Breakpoints
	4.3.2.3 Stop after ..
	4.3.2.4 Stop on Schedule, Stop on TASK kill
	4.3.2.5 Memory Write Breakpoints
	4.3.2.6 Test I/O

	4.3.3 Menu Watches
	4.3.3.1 Add Watch
	4.3.3.2 Delete all Watches
	4.3.3.3 Popup Raw Display
	4.3.3.4 default Watch representation

	4.3.4 Menu Run
	4.3.4.1 Reset processor  Ctrl+F2
	4.3.4.2 Go  F9
	4.3.4.3 Goto cursor pos  F4
	4.3.4.4 Stop simulation  F2
	4.3.4.5 Step into  F7
	4.3.4.6 Step over  F8
	4.3.4.7 Step out  F6
	4.3.4.8 Multiple Steps  Shift+F9
	4.3.4.9 Animate  Ctrl+F9
	4.3.4.10 Multiple step value
	4.3.4.11 Animation speed
	4.3.4.12 Enable Trace ASM / Enable Trace HLL
	4.3.4.13 Clear Trace buffer
	4.3.4.14 Call Stack  Ctrl+F3

	4.3.5 Menu Extern
	4.3.5.1 Interrupts

	4.3.6 Menu Search
	4.3.6.1 Show Code at..
	4.3.6.2 Show Data at..
	4.3.6.3 Search Code hex pattern..
	4.3.6.4 Search Data hex pattern..
	4.3.6.5 Search in Source  F3

	4.3.7 Menu Configure
	4.3.7.1 Show Hints
	4.3.7.2 Save as default
	4.3.7.3 Config with default
	4.3.7.4 COMport  [ICE..Monitor]

	4.3.8 Menu Properties
	4.3.8.1 Short mDelay
	4.3.8.2 Fast RTC
	4.3.8.3 Short Beep

	4.3.9 Menu Windows
	4.3.9.1 Toobar
	4.3.9.2 Arrange icons
	4.3.9.3 Source
	4.3.9.4 Work Registers
	4.3.9.5 Processes
	4.3.9.6 Disassembler
	4.3.9.7 Code memory
	4.3.9.8 Data memory
	4.3.9.9 Watches
	4.3.9.10 Ports
	4.3.9.11 Peripherals
	4.3.9.12 view Trace
	4.3.9.13 view Process states
	4.3.9.14 SysTick / Scheduler timings
	4.3.9.15 Terminal I/O
	4.3.9.16 ADC
	4.3.9.17 KeyBoard 4x4
	4.3.9.18 KeyBoard 8x8
	4.3.9.19 LCD display
	4.3.9.20 LCD_M display
	4.3.9.21 7seg display
	4.3.9.22 I2C 7seg display
	4.3.9.23 14seg display
	4.3.9.24 LCD Graphic
	4.3.9.25 File System
	4.3.9.26 FAT16
	4.3.9.27 Incr Counter
	4.3.9.28 Frequ Counter
	4.3.9.29 I2C PortExpand
	4.3.9.30 System Blinker
	4.3.9.31 SwitchPort
	4.3.9.32 RC5receiver
	4.3.9.33 Servos
	4.3.9.34 Heap
	4.3.9.35 Stepper

	4.3.10 Menu Help

	4.4 SysTick and Scheduler timings
	4.5 Determine Frame and Stack usage with the Simulator
	4.6 Frame and Stack check at runtime
	4.6.1 Extended stack and frame checks

	4.7 JTAG / OWD Debugging
	4.7.1 UpLoad / DownLoad
	4.7.2 Hardware Breakpoints
	4.7.3 Tips and Notes for JTAG Debugging

	4.8 Compiler Switches and the Consequences
	4.8.1 {$D+}   {$D-}
	4.8.2 {$E+}   {$E-}


	5 Lookup and Interpolate
	5.1 Nonlinear functions of sensors
	5.2 Linearising
	5.2.1 System Functions:

	5.3 LookUp Table definition and import
	5.4 Creating the LookUp Table with CurveGen
	5.4.1 Program start

	5.5 Properties of CurveGen

	6 Source-Code-Control-System – SCCS
	6.1 Overview E-LAB Source-Code-Control-System
	6.2 Strategy of the E-LAB SCCS
	6.2.1 Version store
	6.2.2 Restore a previous version
	6.2.2.1 Original Directory
	6.2.2.2 New or different Directory



	7 Flash Down Loader / Writer
	7.1.1 BootLoader Example


