
Introduction

AN10115
Philips Microcontrollers in LIN Applications

Torsten Eggers, Lutz Pape, Wolfgang Schwartz 2002 February 15

Philips
Semiconductors

ABSTRACT
The single-wire LIN bus (Local Interconnect Network) is being de-
fined as a new standard to complement high-end automotive buses
like CAN with lower-cost solutions where less performance suffices.
This application note describes how a LIN bus can be implemented
with existing 80C51-based microcontrollers from Philips Semicon-
ductors.

INTEGRATED CIRCUITS



2002 Feb 15 2

Application note

AN10115

Philips Semiconductors

Philips Microcontrollers in LIN Applications

INTRODUCTION

Several network concepts are in place for the com-
munication between the ever-increasing number of
electronic modules in the car. Buses like J1850 and
CAN are well established and the number of imple-
mented nodes per car is constantly growing. In-
creasing complexity and the need to keep costs at a
minimum brought a requirement for simpler sub-
buses, which in turn may be connected via a more
powerful backbone.

Driven by a consortium of European car manufactur-
ers the open LIN ("Local Interconnect Network") bus
standard is being defined for this purpose. The stan-
dard covers the transmission protocol and medium
and defines tool and application programming inter-
faces. It guarantees the interoperability of network
nodes (hardware/software) and assures a predictable
EMC behaviour.

Some key features of the LIN bus concept are:
• Physical Layer

- low cost single-wire implementation
- enhanced ISO9141, powered from car

battery
- speed up to 20kbits/s (limited for EMC

reasons)
• Data Link Layer

- single master / multiple slaves
- no arbitration necessary
- interface based on standard UART/SCI

(or software "bit-banging")
- self synchronization of slaves without

crystal or resonator
- guaranteed latency times for signal

transmission
• Network Layer

- Time-triggered scheduling

Transceivers care for the signal conditioning of the
physical layer and handle the 12V-signal. Their slew
rate control and wave shaping mainly impact the
system's EMC behaviour. These components are
readily available from Philips as TJA1020T.

This application note describes how a LIN bus can be
implemented with existing microcontrollers from
Philips Semiconductors.

Often the LIN master controller acts as a gateway
between e.g. a CAN bus and the LIN bus. The
P87C591 has a PeliCAN-interface for the CAN side,
while its enhanced UART can be used to support the
LIN bus. The handling of the CAN interface is cov-
ered in a separate Application Note (AN00043).

MESSAGE FRAME
LIN uses a single message frame format to synchro-
nize and address the nodes and to exchange data
between them. The master defines the transmission
speed and sends the header of the message frame
(see figure 1). This header starts with a synch brake
followed by a synch field to synchronize the LIN
slaves to the master's bit rate. The ID-field is the last
header block; it holds information about the sender,
receiver(s) and data field length.

After synchronization all slave nodes  - and the
master node can be a slave, too -  interpret the ID-
field and react accordingly: either receive or send
data or do nothing. This response consists of 2, 4 or
8 data bytes and a final checksum field.

A special identifier is used to set all nodes in a sleep
mode to conserve battery power. This stops all bus
activity until a wake-up signal is applied on the bus
by any node.

Header and response are separated by an in-frame

Figure 1 LIN Message Frame

Sync break Sync field Identifier Data

Header Response



2002 Feb 15 3

Application note

AN10115

Philips Semiconductors

Philips Microcontrollers in LIN Applications

response space, while message frames are sepa-
rated by inter-frame spaces. The minimum length of
both spaces is zero.

LIN MASTER
The master task, running on the LIN bus master
node, controls all traffic on the bus:

• define transmission speed (2k ... 20kbits/s), de-
rived from a precise reference clock

• send synch brake
• send synch field
• send ID field
• monitor and validate data bytes by checking the

checksum
• request slaves to enter sleep-mode and wake

them up again, when needed
• react on wake-up break from slave

In the examples below Philips' P87C591 handles
these master tasks.

LIN SLAVES
Slave tasks run on up to 16 slave nodes connected
to a LIN bus. The master node can be a slave, too.
The slave task cares for the following:

• Wait for synch brake
• Synchronize on synch field
• interpret identifier and act accordingly:

- do nothing
- receive data
- send data

• check/send checksum

The Philips 51LPC76x family of microcontrollers is
used in the examples.

EXAMPLES
A sample LIN system was implemented with a
P87C591 on the master node and P87LPC76x on
several slave nodes. Following is a description of the
use of the on-chip peripherals to perform the LIN

master and slave tasks.

To fulfill all timing restrictions of
the current LIN specification, all
nodes have to be equipped with a
precise oscillator reference, i.e. a
crystal on the master node
(P87C591) and a crystal or ce-
ramic resonator on the slave
nodes (P87LPC76x). The '591 has
a dedicated Baud-rate generator
on-chip, while for the '76x timer T1
is used to generate the Baud-
rates.

Both families of microcontrollers
have an enhanced UART to sup-
port the serial LIN transmission.

Timer T0 is used for various time-
out detections.

Because the LIN synch-break is
longer than the breaks common
UARTs can handle, the slaves ad-
ditionally use other on-chip blocks
like the analog comparator or ex-
ternal interrupts for break-
detection.

L
IN

Master Node

Master Task

Slave Task

A
p

p
lic

at
io

n
 C

o
d

e

Slave Node1

Slave Task

A
p

p
lic

at
io

n
 C

o
d

e

Slave Node2

Slave Task

A
p

p
lic

at
io

n
 C

o
d

e

Slave Node3

Slave Task

A
p

p
lic

at
io

n
 C

o
d

e

Write

Read / Write

Read / Write

Read / Write

Read / Write

Figure 2 LIN Bus Nodes



2002 Feb 15 4

Application note

AN10115

Philips Semiconductors

Philips Microcontrollers in LIN Applications

SOFTWARE
The software routines require less than 1Kbytes of
program memory (master/slave tasks in '591 and
slave tasks in '76x) and less than 30 bytes of RAM.

During the initialization phase, the LIN transceiver is
configured and the protocol handler variables are
preset.

The interface between the application program and
the LIN driver is implemented with so-called callback
functions. These functions have to be provided by the
application program and are called from the driver.

Three basic tasks need to be performed by the
nodes: the main task reflecting the specific function
of the node and two tasks to control the power con-
sumption by putting the node to sleep and wake it up
again. In the example these functions are called

• LINServiceRoutine
• LINSetToSleep
• LINWakeup

The functions use the parameters LINState,
LINError, LINData and LINID to pass in-
formation between the routines.

LINServiceRoutine

This is the main routine, which realizes the behaviour
of the node. This function is called whenever a proto-
col event has occurred, e.g. a break was detected, a
LIN-ID was received or a bus error happened. Infor-
mation about the event is returned in two variables,
"LinState" and "LinError". Based on the contents of
these variables the application program performs the
function of the node.

LINSetToSleep

When the car engine is
not running and power is
supplied from the battery,
the power consumption
must be minimized. All
nodes connected to the
LIN bus can be put in a
power-saving sleep
mode.

Philips microcontrollers
P87C591 and
P87LPC76x support this
function with two different
modes. In Power-Down
mode, the oscillator is
stopped and no on-chip
peripherals are running.
This is the most effective
power saving mode. It
can only be ended by an
external interrupt or a
chip reset.

In Idle mode, the CPU is
stopped and only some peripherals like timers keep
working. Normal operation is resumed after any (en-
abled) interrupt request. Even if the microcontroller in
a LIN-node has to be kept active, power on the LIN
bus can be conserved by putting the LIN transceiver
into Sleep-Mode.

LINWakeup

There are two ways to wake up a LIN node from
Sleep mode. Either a local event wakes it up or a
wake up request was sent by any other node via the

Figure 2 Interface Application Program - LIN Drivers



2002 Feb 15 5

Application note

AN10115

Philips Semiconductors

Philips Microcontrollers in LIN Applications

LIN bus. A local event could be a pushed button or
an exceeded temperature limit. If a local event re-
quires an action of the master, any node can issue a
wake up request on the LIN bus.

The follow code example1 illustrates how the callback
function LINServiceRoutine can be imple-
mented.

                                                     
1 Raisonance C-compiler syntax.

REFERENCES
For further details, please refer to the following publi-
cations:
• LIN (general, specification)

- http://www.lin-subbus.org/
- LIN Specification Revision 1.2

• AN00043; P8xC591 Microcontroller in CAN Ap-
plications
- www.semiconductors.philips.com/acrobat/ap

plicationnotes/an00043.pdf
• Philips Data Sheets

- www.semiconductors.philips.com
• LIN transceiver

- TJA1020 LIN Transceiver
- www.semiconductors.philips.com/pip/tja1020t/

• Microcontrollers
- P87C591 CAN Microcontroller
- P87LPC76x Microcontroller Family
- www.semiconductors.philips.com/products/

 standard/microcontrollers/products/selguides/

#include <RelPc764.h>
#INCLUDE "TJA1020.H"

//assuming the header file
//is located in the same di-
//rectory as this file

#include "LINCmpSl.h"
//assuming the header file
//is located in the same di-
//rectory as this file

#include "Tempsense.h"
//assuming there is tempera-
//ture sensor in this appli-
//cation. The corresponding
//code has to be written by
//the user.

//LINServiceRoutine

void LINServiceRoutine()
{
 if (LinError==0)

//check on LinError
   {           //no LINError

//###### LINFrameOk ################
//the node receives data

   if (LINFrameOk)
//A valid LinFrame availabe?

        {    //Now test the LINID
//### ID0 ###
         if (LinID==0)
            {  //react on LinID=0
             if (LinDataPtr[0]>0)
                LED1=0;   ;LED1 on
             else
                LED1=1;   ;LED1 off
            } //LINID = 0

//### ID3 ###
         IF (LINID==3)
            {  //REACT ON LINID=3
             IF (LINDATAPTR[0]>0)
                LED2=0;   ;LED2 ON
             ELSE
                LED2=1;   ;LED2 OFF
            } //LINID = 3
        } // LINFRAMEOK
//###### LINID RECEIVED ############

//the node transmits data
     else if(LinIDReceived)

//test if a valid ID has been
//received

            {
             if (LinID==10)
                { // react on ID=10
     LinDataPtr[0]=TemperaturBuffer;

//write data to LinData
     TI=1

// initiates sending
                } //LINID=10
            } //LinIDReceived
   } //LinError = 0
 return;
}



Revision history: 2002-02-15 Revision 1

Definitions
Short-form specification – The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information, see the relevant datasheet or data handbook.

Limiting values definition – Limiting values given are in accordance with the Absolute Maximum Rating System (IEC134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these
or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for
extended periods may affect device reliability.

Application information – Applications that are described herein for any of these products are for illustrative purposes only. Philips Semicon-
ductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers
Life support – These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applica-
tions do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes – Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, stan-
dard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, un-
less otherwise specified.

Contact information
For additional information please visit
http://www.semiconductors.philips.com.     Fax: +31 40 27 24825

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com

 Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A

Date of release: 09-02
Document order number:  9397 750 10414

Philips Semiconductors Application note

Philips Microcontrollers in LIN Applications AN10115


