

An Embedded Web Server for National Semiconductor’s CR16MCS9
CannonBall

What datagrams may come…

Abstract:

These days it seems, everybody and their brother is talking about the need of becoming “Internet
aware” - a new catch phrase sounding eerily similar to something said in Eden some time ago. The
explosive growth and appeal of the Internet has everyone scrambling to get onboard, or be thought
of as somehow “20th century”. Today, Internet accessibility in one form or another, if not an a
priori requirement, is at least a highly desirable option in many embedded applications. Previously
the sole domain of mainframes, PCs, and workstations, TCP/IP stacks and other networking
applications are now being written by the dozens for embedded microprocessors and
microcontrollers, providing them the smarts to hook into the “matrix”. This brief article will
examine one such TCP/IP stack and Web server implemented on National Semiconductor’s
CannonBall RISC microcontroller. We’ll also seek to resonate some understanding of the basic
issues one needs to consider when deciding on which approach is best suited for their embedded
Internet application.

Introduction:

The rapid advances in semiconductor technology throughout the last decade of the 20th century
have enabled the development of powerful new microprocessors and microcontrollers, bringing the
embedded world computational power previously found only in mainframes, supercomputers, and
idiot savants like the Rainman. RISC architectures, previously untenable in a cost sensitive
embedded word (due to their thirst for expensive memory), have now been adopted as somewhat
standard fare. National Semiconductor’s CompactRISC is one such architecture, having at once
both the power to run the Networking software necessary to connect your embedded application to
the Internet, and the memory efficiency still requisite in the embedded world.

(It’s a little known fact that the Internet was originally developed by a bunch of professors who
were hoping to make the arduous job of homework grading easier. Professors and their Teaching
Assistants (TA’s) were in desperate need of a system to allow them to quickly and easily exchange
their student’s homework assignments. If Professor Z (hailing from Kokomo) could wire his or her
TA ungraded homework (on vacation in Las Vegas), well then the Professor could spend more of
his/her valuable time writing obscure and arcane papers to secure tenure (read “early retirement”).
While some might argue that this is a bunch of hooey, that’s the way I read it.)

Discussion:

Among the myriad of embedded Internet solutions being touted today, all fall neatly into one of
five fundamental groups:

2

1. Embedding a fully functional (or nearly so), third party TCP/IP stack into your application,
enabling direct Internet access…

2. Using a third party’s external TCP/IP gateway device, such as NetSilicon’s Net+ARM™
solutions…

3. Writing your own TCP/IP stack, or some functional subset thereof…
4. Using your own, or a third party’s, “lightweight”, proprietary communication protocol to talk with

an external Gateway device, which is itself connected to the Internet (e.g. EmWare)…
5. Everything else – for those which don’t fall that neatly.

The decision as to which strategy to adopt will generally lie along the vector sum of the two
orthogonal vectors of price and performance. That is, increasing levels of Internet
“interoperability” will generally come with increased cost. Simply put, what Internet communication
capabilities must your application possess - and just how much are you willing to pay for it.

At one end of the scale lay both the full-featured stacks offered by many RTOS vendors and the
external gateway devices offered by the likes of NetSilicon and Seiko. Applications requiring fully
RFC-compliant Internet communication capabilities, or those needing to provide an industry
standard API (whatever that means), may opt for either of these solutions. If your application’s
resources (i.e. RAM, ROM, and HP - horsepower) are limitless (or there abouts), licensing
networking software from a third party is an excellent choice. Alternatively, if you still need a high
level of Internet interoperability but lack the onboard resources to embed one of these stacks, the
external gateway solutions like Seiko’s S-7600A and NetSilicon’s Net+ARM™ are attractive. Both
of these options offload the engineer the onerous task of becoming intimately familiar with the
multifaceted and sundry networking issues he or she would otherwise be required to master.
Naturally, all this service comes at no mean price.

However, a subtle fact often left unconsidered when evaluating these third party stacks is that,
many of the features which they include to ensure RFC compliance - are simply not required in many
embedded environments. Simply put, while seeking to closely comply with the spirit of the RFC’s,
many third party stacks are prohibitively large for many typical embedded environments, requiring
more code and data space than many microcontrollers can afford. What is more, a close
examination of the capabilities of some of the external devices, Seiko’s S-7600A TCP/IP device for
example, reveals many areas on noncompliance with the specifications! For example, despite the
fact that all IP’s are required to support fragmented datagrams, Seiko’s device does not.

Conversely, at the bottom end of this scale lay the many applications lacking the resources, budget,
or the need to speak TCP, but nonetheless need some limited form of connectivity. These
applications would be well served by options 3 or 4 – writing your own functional subset of TCP/IP,
or adopting an integrated, proprietary, “lightweight”, non-TCP protocol. EmWare offers such a
solution. EmWare’s approach is at once adequate and appropriate for many of these low-end
applications. The only real drawbacks to such an approach are:

1. Similar to the full-blown stacks, you must license the non-standard, proprietary
communication kernel…

2. Direct Internet connectivity is not possible. Your application accesses the Internet via a
Gateway device (PC).

3

Nevertheless, for many low-end applications these may not be show-stopping issues. Often low-end
applications require only the intermittent transfer of small amounts of data, and have no need to
speak directly with an Internet host or router. (Actually, UDP - the User Datagram Protocol was
developed for just this scenario. UDP is used by many networking applications needing only to
transmit periodic datagrams containing requests for service, or answers to these requests. For
example, most DNS requests issued by browsers use UDP.)

Finally, for those applications whose requirements lay somewhere between these two extremes, a
suitable compromise may be that of writing your own networking software. What is needed is an
acceptable subset of the standard TCP/IP capabilities - affording the application direct Internet
connectivity, while avoiding the costs associated with most of the high-end solutions. Make no
mistake; this too comes at a price – and one that many engineers may not wish to countenance.

The task of writing networking software is by no means trivial (at least with those with nominal
IQ’s, like that of the author’s), and is fraught with numerous crevasses and pitfalls. The learning
curve for those unfamiliar with the subject can be considerable. However, it is the author’s opinion
that such investments return significant long-term benefits for the companies and their engineers
whose products are evolving to include networking facilities. Like any other area of technology, one
cannot consistently and successfully apply it, without having at least some level of expertise in that
area. While “time-to-market” is certainly an important and even critical consideration, if you wish
to be around in the long run, you’ll need to equip yourself for the journey (i.e. acquire the necessary
knowledge).

To that end, let us begin with a brief overview of this voluminous subject…

I. TCP Backgrounder:

The primary purpose of any transport protocol is to provide a “…reliable, securable, logical (i.e.
virtual) connection between pairs of processes”. As per RFC 1122, TCP is the primary virtual-circuit
transport protocol for the Internet suite.” By “virtual-circuit”, what is meant is that, although TCP
establishes what appears to be an actual circuit-switched or, physical connection (just like the one
you make when you phone in your pizza order), TCP is actually a packet-switched protocol. Unlike
the direct point-to-point circuit established between a pair of telephones when placing a call, each
packet in a packet switched protocol may be routed through different circuits, or paths, in reaching
its destination. In a packet switched protocol, every packet contains a source and destination
address. This enables the dynamic routing of packets. As circuits become available or unavailable,
the several packets of any single message may be routed through the Internet using many different
paths before reaching their final destination.

TCP is used by applications requiring a reliable, connection-oriented transport service, such as Web
browsers (HTTP), electronic mail (SMTP/POP), and file transfer programs (FTP). What does all
that mean? Well, as per the venerable RFC, providing this Quality of Service (QoS) over an
unreliable network requires facilities in the following areas:

• Basic Data Transfer:

4

TCP manages the transfer of data between peers by encapsulating the data into segments,
which are then carried in IP datagrams through the Internet. TCP attaches a header as shown
in Figure 1 to each segment, carrying parameters necessary for addressing, flow-control, and
other important functions.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Data
Offset Reserved

Destination Port

Window

Padding

Urgent PointerHeader Checksum

Data…

Options...

Source Port

Sequence Number

Acknowledgment Number

Flags

0 1 2 3

Figure 1. TCP Header Format

• Reliability:

TCP includes mechanisms to recover data that has been damaged, lost, duplicated, or received
out of order. These mechanisms include:

1. Assigning a number to each byte transmitted (the sequence number), and requiring an

acknowledgement (or, “ACK”) from the receiving TCP for all bytes sent. If such an
acknowledgment is not received within a predefined timeout interval, the data is
retransmitted. At the receiver, these sequence numbers are used to reconstruct the
original data.

It is possible for segments to be received out of order, should they be routed through
paths having unequal transit times. In addition, consequent to the varying and
potentially unequal delays incurred by different segments, a transmitting TCP may not
receive a timely acknowledgement should a segment be unduly delayed. In that case, the
transmitter would resend this segment - incorrectly inferring that it had been either
lost or damaged, resulting in the reception of duplicated segments by the receiving TCP.

In both of these cases, the segments’ sequence numbers help ensure that the data
reconstructed by the receiving TCP exactly matches that originally sent. Segments
received out of order are correctly reordered, and duplicate segments are discarded.

5

2. Including a checksum for each segment transmitted. This checksum must be confirmed
by the receiving TCP. Should a segment’s checksum fail, it is not acknowledged. In this
case, the sending TCP will eventually resend this segment.

• Flow Control:

TCP utilizes a method of flow control called a window. The window is a 16-bit value transmitted
in every segment header indicating the maximum number of bytes that the sender may transmit
before receiving further permission. More on this later…

• Multiplexing:
In a typical host (all systems using TCP/IP attached to the Internet - except routers), multiple
resident applications (e.g. a Web browser, and an e-mail client) may simultaneously utilize TCP’s
services. Within each host, each application is assigned a port number, thereafter used by TCP
as a “handle” to identify the application. Using this port number, TCP is able to determine which
segment goes to which application.

• Connections:
Not to be confused with the physical, point-to-point connection mentioned earlier, TCP is a
connection-oriented protocol. That is, in order to achieve the reliability and implement the
flow-control mechanism mentioned above, TCP must establish, manage, and maintain a connection
between the two peers exchanging data. A connection is defined as a pair of sockets, and a
socket is defined as the concatenation of the application’s port number with its host’s IP
address. These data, plus each TCP’s sequence numbers, window sizes, etc., specifies the
connection. When two hosts wish to communicate, their respective TCP's first establish a
connection (initialize the status information on each side). When their communications are
complete, the connection is terminated, or closed, to free the resources for other uses.

• Precedence and Security:
TCP includes features that allow applications to indicate certain levels of security and
precedence for their communications. Default precedence and security values are required to
be used when these features are not explicitly indicated (which is most of the time).

TCP and Window Management

Though initially perhaps somewhat confusing, TCP’s use of “the Window”, and just how this
Window is able to slide is one of TCP’s fundamental concepts. Essentially, TCP’s Window is a
means of flow control, somewhat analogous to the XON/XOFF mechanism used in asynchronous
serial links. However, TCP’s Window augments this basic flow control mechanism by including
means to maximize the efficiency of the communication channel. In the TCP context, efficiency
is defined as the maximum potential data flow between peers - in the shortest possible time.
That is, the transmission of data in a manner that utilizes the least amount of network traffic.

Every TCP segment sent out over a network contains a dynamic Window value in the header
whose purpose is to inform the other end of the connection just how much data it is currently
prepared to accept. At first glance, this may seem a little redundant since during the SYN
process each TCP explicitly or implicitly advertises its Maximum Segment Size (MSS). Once

6

the other end knows the maximum number of bytes it can transmit in a segment, why does it
require yet another parameter called a Window? The answer is quite simple: the MSS value
advertised during SYN is usually totally unrelated to the buffer capacity of the receiving
Application. That is, the MSS value stated during SYN is governed by the underlying Link
layer’s maximum Frame size. Ethernet frames, for example, are limited to 1500 bytes.
Consequently, a TCP sitting on top of an Ethernet would likely advertise a MSS of no greater
than about 1460 bytes (to account for lower layer header overhead). Nevertheless, the
Application’s receive buffers may be larger than Ethernet’s maximum frame size, and as a
consequence, may be capable of receiving more than one frame at a time. This is desirable in
that it reduces the number of ACK packets the receiver must send, again improving network
efficiency. In this case, the sender may send several segments without waiting for a
confirmatory “ACK” after each segment.

Since the delays encountered by datagrams traversing the internet are highly variable,
requiring a transmitter to wait for the peer to ACK every segment before sending another
would result in a great deal of wasted time. The judicious use of the Window helps minimize
such waste by allowing the transmitter to send as much data as the peer is capable of
accepting, without having to wait for an ACK of the individual segments. Certainly, the receiver
must still “ACK” every segment, but this can be done in an aggregate manner instead of one at a
time.

One important consideration for any TCP’s Window management scheme is the nefarious Silly
Window Syndrome, or SWS. Since first encountered by a Professor on acid, it has generated a
great deal of press and seems to be a favorite buzzword of many armchair Internet experts.
SWS is an unforeseen weakness in a literal, straightforward implementation of the window
management scheme as suggested in RFC 793, somehow or other exploited by the original
Telnet Application. Subsequent studies led to the development and standardization of both
sender and receiver algorithms to preclude it (for those interested, see RFC 1122: 4.2.3.4 and
4.2.3.3).

Simply defined, Silly Window Syndrome is a “…stable pattern of small incremental window
movements resulting in extremely poor TCP performance.” It occurs when a sending TCP gets
fooled into sending only tiny data segments, although both sender and receiver have a large
total buffer space available. SWS can only occur during the transmission of large amounts of
data, and will disappear once the connection goes “quiescent”.

II. IP Backgrounder:

The Internet Protocol puts the “IP” in TCP/IP. It is TCP/IP’s Network protocol. IP comprises two
basic functions: addressing and fragmentation. Just like TCP, IP encapsulates its data by
prepending it with a header as illustrated in Figure 2.

It’s easy to get confused as to just why we need an IP address in the first place. If your PC sits on
an Ethernet or other LAN (Local Area Network), isn’t its MAC address unique? Why not simply use
this address instead of requiring yet another one?

7

Version
(0x45)

Header
Length

Type of
Service

Total Datagram
Length

Identification Flags Fragment Offset
(always 0)

Time to Live
(always 0xff) Protocol Header Checksum

Source Address

Destination Address

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

Figure 2. IP Header Format

• IP addressing

The answer is straightforward. Remember that the Internet is not simply one big LAN; rather
the Internet is defined as a network of networks, or perhaps better stated, a network of LANs.
If everybody were a node on one great big homogenous network, all running the same Link layer
protocol (Ethernet, for example), there would be no need for a separate addressing scheme.
The fact is however, that many disparate networks exist, all operating incompatible Link layer
protocols.

Every host on a LAN is uniquely identified at the Data Link layer by its Link layer, or MAC
address (Media Access Control). Neighboring nodes on any given LAN communicate with each
other based on this physical address. However, a node on an Ethernet cannot directly
communicate with a node on a Token Ring network – and vice versa. Likewise, nodes speaking
ATM, FDDI, etc. are all unintelligible to an Ethernet node. The purpose and design of the
Internet Protocol is to allow nodes sitting on these dissimilar LANs to internetwork. It does so
by abstracting their conflicting Link layer protocols, providing a uniform communication
interface for all hosts. This permits hosts residing on disparate networks to communicate, even
though they may speak a different L3 (Link layer language).

This is where the IP address comes in. Whereas every node on a LAN is uniquely identified at
the Data Link layer by its MAC address, each host on the Internet is uniquely identified by its
IP address. IP addresses (i.e. Ipv4) are 32-bit numbers, comprising two subfields: a network
identifier and a host identifier (also referred to as the netid and hostid). Figure 3 illustrates
this hierarchical addressing scheme.

The netid field of the address uniquely identifies a specific LAN, WAN, or other group of
linked computers, such as one of the networks shown in Figure 2. The hostid field of the
address uniquely identifies a host on the addressed network. (Actually, the hostid specifies a

8

unique NIC, or Network Interface Card. An individual computer usually - but not necessarily,
has only one such NIC.)

Version 4 of the Internet Protocol (IPv4) has been in use since 1981 and is slowly being
supplanted by IPv6. Version 6 improves upon IPv4 in several areas, not the least of which is the
extension of IP addresses to 128 bits.

Network #3

Network #2Network #1

Network3.host1

Network3.host3
Network3.host2

Network1.host3Network1.host2

Network1.host1

Network2.host2
Network2.host3

Network2.host1

Figure 3 – Ipv4 Hierarchical Addressing scheme

• IP fragmentation
Don’t confuse an IP fragment with a TCP segment; an IP fragment is a piece of a TCP segment
whose size precludes it from being transmitted over a network in one piece. The Internet
Protocol was designed to be independent of both the underlying Data Link protocol and the
overlying Transport protocol. This flexibility is critical because of the large numbers of
incompatible Transport and Link layer protocols. However, this independence carries with it
certain difficulties, one of which is how to transmit a datagram whose size exceeds that of the
underlying Link layer’s frame size, also referred to as the Maximum Transmission Unit (MTU).

To accommodate this eventuality, an IP should be capable of fragmenting a segment (received
from the overlying transport layer) whose size exceeds this MTU, into multiple datagrams,
whose sizes allow them to fit into the frame size below it…simple. Not really – in fact, most IP’s
avoid the nastiness of fragmentation by determining the underlying frame size limitation and
reporting that to the transport layer ahead of time by means of what is termed a path
discovery mechanism. In fact, this is the recommended procedure. However, ALL IP’s are

9

required to be capable of accepting and reassembling incoming fragmented datagrams. IP
manages this process by assigning an identification number and fragment offset number to
every datagram.

II. Particulars of this Implementation

The TCP/IP stack and embedded Web server described herein consumes less than 20K of code
space and requires approximately 2.5K of RAM. The stack operates under uC/OS-II; an RTOS
recently ported for use with the CR16B RISC core, chosen for its small kernel size and minimum
RAM usage. Each layer is implemented as an independent task. Rather than implementing the “call-
return” mechanism used by many stacks, a shared data structure scheme is used. These structures
comprise each layer’s “API”, or interface. Protocol layers are scheduled by the OS according to
each layer’s priority, and the layers themselves may cause other layers to run to improve efficiency.

Physical

Data Link

Network

Transport

Application
DNS/WINS

(Name Server)
HTTP 1.0

(Web Server)

IP/ICMP

SLIP/(PPP)

TCP UDP

UART

Figure 4 – Protocol Layer Model

You may note in Figure 5, illustrating the sequencing of the various layers during a typical HTTP
request, that these priorities somewhat follow the progression of a typical segment as it proceeds
up and down the protocol stack. Task priorities are indicated by the circled number in the upper
left corner of each task box. Each layer is assigned a unique priority that seeks to maximize the
efficiency of the sequencing process. Judicious assignment of layer priorities help to minimize
response time to client requests by vectoring received packets directly to relevant layers.

Rather than keeping the layers suspended until they’re needed, all protocol layers run continually.
Upon receiving control of the CPU from the OS, each layer examines certain flags in its API, as well

10

as its state variable, to determine what – if any, service it need perform. If these indicators are
such that no service is required, the task will delay itself for one OS tick, yielding the CPU to the
next layer. Although dynamic priority alteration could be used to further improve sequencing
efficiency, doing so would have increased the OS kernel size, as well as packet processing latency.
As a compromise, certain layers call the OS function OSTimeDlyResume, thereby allowing a
previously delayed, but required layer to run immediately. Other sequences are possible, depending
upon the nature of the request.

OS Tick Time (4mS)

OS task switch time

OST
im

eD
ly

(1)

SLIPRx

1

SLIPTx

2

IP

3

ICM
P

4

U
D

P

5

W
I/D

N
S

6

TCP

7

H
TTP

9

TCP

7
IP

3
SLIPTx

2

SLIPRx

1

SLIPTx

2

IP

3

TCP

7

H
TTP

9

OSTaskIdle

12

. . .

OST
im

eD
ly

(1)
OST

im
eD

ly
(1)

OST
im

eD
ly

(1)

OST
im

eD
ly

(1)

OST
im

eD
ly

(1)
OST

im
eD

ly
(1)

OST
im

eD
lyR

es
um

e (
TC

P)

OST
im

eD
lyR

es
um

e (
IP

)

OST
im

eD
lyR

es
um

e (
SL

IP
Tx

)

OST
im

eD
lyR

es
um

e (
SL

IP
Rx

)

OST
im

eD
ly

(1)
OST

im
eD

ly
(1)

OST
im

eD
ly

(1)
OST

im
eD

ly
(1)

OST
im

eD
ly

(1)

Figure 5. Protocol Task flow (typical HTTP request)

A. The Transport Layer – TCP

Several data structures are created and maintained by TCP to facilitate coherent operation. The
RFC explicitly refers to one such data structure, namely the TCB, or Transmission Control Block.
TCP must create and maintain one of these structures for each active socket. It is instructive to
examine the nature and operations of these structures, which will help shed some light on the
interworkings of the various protocol layers. We will therefore discuss each of these structures in
some detail.

1. The TCP interface, or, “API”

The Application layer interfaces with TCP by means of the data structure listed in Figure 6.
Similar to the “call-return” API’s found in many stacks, this API includes all necessary
parameters to permit concurrent TCP utilization by multiple applications.

11

The TCP task reacts to events (occurring at the IP level), and responds to commands (issued
by the application(s)). Each application wishing to use TCP’s services must first issue a
TCP_OPEN command. If successful, TCP will return a unique connection name (CRSOCK_T
*Socket) thereafter used by the application for all future interactions with TCP.
Specifically, an event is defined as either:

1. The reception of a TCP segment from the underlying IP layer as indicated by the

IPRECV flag in the Cmd field of IP’s API data structure…
2. The successful passing of a segment to IP for transmission as indicated by the IPSEND

flag in that same Cmd field.

typedef struct tcpapi_t{
 UWORD LocPort; /* Our (local) Port number */
 UWORD ForPort; /* Foreign (peer’s) Port number */
 QUADB_T ForIP; /* Peer’s IP address */
 UWORD Cmd; /* Command from Application layer */
 UWORD Status; /* Status of the TCP layer */
 UWORD Tout; /* Timeout for various TCP states */
 UBYTE *RxBuf; /* Pointer to Application’s Rx buffer */
 UWORD RxCount; /* Number of bytes recd */
 UWORD RxBufLen; /* Application’s Rx buffer length */
 UBYTE *TxBuf; /* Pointer to RAM data to send */
 UWORD TxCount; /* Number of RAM bytes to send */
 const UBYTE *html; /* Pointer to ROM-based data to send */
 UWORD HtmLen; /* Number of ROM bytes to send */
 CRSOCK_T *Socket; /* Pointer to Transmission Control */
 /* Block for specified connection name */
} TCPAPI_T;

Figure 6. TCP’s API data structure

Commands are issued by the overlying Application layer via flags in the Cmd field of the
TCPAPI_T data structure. TCP recognizes the following commands (although not all are
currently supported):

#define TCP_OPEN BIT0 /* OPEN a connection */
#define TCP_RECV BIT1 /* Data has been received */
#define TCP_CLOSE BIT2 /* CLOSE this connection */
#define TCP_STATUS BIT3 /* Not implemented */
#define TCP_ABORT BIT4 /* ABORT this connection */
#define TCP_SEND BIT5 /* SEND specified buffer(s) */
#define TCP_SENDACK BIT6 /* SEND an ACK only */
#define TCP_ACTIVE BIT8 /* Used in conjunction w/ OPEN */
#define TCP_MORE BIT9 /* Indicates whether the application*/

/* is finished sending all data */

Figure 7. TCP’s command definition

2. The TCP Socket.

12

Upon receiving the TCP_OPEN command, TCP will create a TCP Control Block (if one is
available) and provide the application with a pointer to this structure. Thereafter, this
pointer is used by the application(s) as a “handle” to uniquely identify itself from among the
other (if there are others) applications requesting service from TCP. As illustrated in
Figure 8, TCP Control Blocks are linked together with any others that may have been
created, forming a list of active sockets. (*Note that, due to the RAM requirements of the
HTTP layer, only one such socket may be created on the Cannonball.)

The application may request TCP to open an active or passive connection, indicated by
setting or clearing the TCP_ACTIVE flag. An active open is one in which TCP will initiate a
connection by sending a SYN segment to a peer. In contrast, a passive open is one where
TCP waits for such a SYN segment from a peer. Although both active and passive opens are
supported, a server, by definition, awaits connection requests from a peer, and will
therefore issue a passive open command to TCP.

 UWORD LocPort;
 UWORD ForPort;
 QUADB_T ForIP;
 QUADB_T LocIP;
 UWORD TCPState;
 SNDUNA;
 SNDNXT;
 UWORD SNDWINSZ;
 UWORD SNDURGPTR;
 SNDISS;
 RCVNXT;
 UWORD RCVWINSZ;
 UWORD RCVURGPTR;
 RCVIRS;
 struct crsock_t *CRSOCKNext;
 struct crsock_t *CRSOCKPrev;

 UWORD LocPort;
 UWORD ForPort;
 QUADB_T ForIP;
 QUADB_T LocIP;
 UWORD TCPState;
 SNDUNA;
 SNDNXT;
 UWORD SNDWINSZ;
 UWORD SNDURGPTR;
 SNDISS;
 RCVNXT;
 UWORD RCVWINSZ;
 UWORD RCVURGPTR;
 RCVIRS;
 struct crsock_t *CRSOCKNext;
 struct crsock_t *CRSOCKPrev;

*NULL

CRSOCK_T *CRSockList =

TCPDeleteSoc (CRSOCK_T *)

CRSOCK_T *TCPCreateSoc ()
 UWORD LocPort;
 UWORD ForPort;
 QUADB_T ForIP;
 QUADB_T LocIP;
 UWORD TCPState;
 SNDUNA;
 SNDNXT;
 UWORD SNDWINSZ;
 UWORD SNDURGPTR;
 SNDISS;
 RCVNXT;
 UWORD RCVWINSZ;
 UWORD RCVURGPTR;
 RCVIRS;
 struct crsock_t *CRSOCKNext;
 struct crsock_t *CRSOCKPrev;

 UWORD LocPort;
 UWORD ForPort;
 QUADB_T ForIP;
 QUADB_T LocIP;
 UWORD TCPState;
 SNDUNA;
 SNDNXT;
 UWORD SNDWINSZ;
 UWORD SNDURGPTR;
 SNDISS;
 RCVNXT;
 UWORD RCVWINSZ;
 UWORD RCVURGPTR;
 RCVIRS;
 struct crsock_t *CRSOCKNext;
 struct crsock_t *CRSOCKPrev;

*NULL

CRSOCK_T CRSOCKTbl[MAX_SOCKETS] =

Figure 8 - TCP Socket List

3. The TCP Segment.

Once receiving data to transmit, TCP will partition the data into one or more segments,
depending upon both the size of the data and the availability of such segments. Just like
the TCP Control Block, segments are created and deleted as needed. Once a segment is
created it is placed on the active queue (XmitQList) to await ACKnowledgment. If and when
it is acknowledged, it is deleted, or, returned to the list of available segments

13

(XmitQFreeList). As shown in Figure 9, as they are created, TCP segments are linked
together, forming the linked-list of active segments.

*NULL

XMITQ_T *XmitQFreeList

XMITQ_T XmitQTbl[MAX_SEGMENTS] = XMITQ_T *XmitQList =

Figure 9. TCP Segment Queues

PSEUDO_T PHdr;
TCP_T TCPHdr;
UWORD SegTimer;
UWORD Status;
CRSOCK_T *Socket;
UBYTE *TxStart;
UWORD TxCount;
const UBYTE *html;
UWORD HtmLen;
struct xmitq_t *XmitQNext;
struct xmitq_t *XmitQPrev;

PSEUDO_T PHdr;
TCP_T TCPHdr;
UWORD SegTimer;
UWORD Status;
CRSOCK_T *Socket;
UBYTE *TxStart;
UWORD TxCount;
const UBYTE *html;
UWORD HtmLen;
struct xmitq_t *XmitQNext;
struct xmitq_t *XmitQPrev;

PSEUDO_T PHdr;
TCP_T TCPHdr;
UWORD SegTimer;
UWORD Status;
CRSOCK_T *Socket;
UBYTE *TxStart;
UWORD TxCount;
const UBYTE *html;
UWORD HtmLen;
struct xmitq_t *XmitQNext;
struct xmitq_t *XmitQPrev;

PSEUDO_T PHdr;
TCP_T TCPHdr;
UWORD SegTimer;
UWORD Status;
CRSOCK_T *Socket;
UBYTE *TxStart;
UWORD TxCount;
const UBYTE *html;
UWORD HtmLen;
struct xmitq_t *XmitQNext;
struct xmitq_t *XmitQPrev;

PSEUDO_T PHdr;
TCP_T TCPHdr;
UWORD SegTimer;
UWORD Status;
CRSOCK_T *Socket;
UBYTE *TxStart;
UWORD TxCount;
const UBYTE *html;
UWORD HtmLen;
struct xmitq_t *XmitQNext;
struct xmitq_t *XmitQPrev;

*NULL

void TCPDeleteSeg (XMITQ_T *)

XMITQ_T *TCPCreateSeg ()

Each queued segment holds only those parameters necessary to ensure that the segment
can be accurately retransmitted in the event it is not properly acknowledged. The segment
data itself is not queued, since this would require enormous amounts of RAM. Only the
segment’s relevant parameters are queued. Upon creation, each segment is timestamped
with the current OS time. When the TCP has sent all available segments, it periodically
updates and checks the timer field of every “unACK’d” segment on the queue. If any or all
of the segments awaiting acknowledgment on the queue timeout, they will be retransmitted
once. If the same segment times out again, a reset is sent to the peer, and the TCP closes.

Again, due to the RAM consumption of the HTTP layer, this implementation creates only a
few such segments (4-6) before having to wait upon an ACKnowledgement from the peer.
Upon receiving data bearing or certain other control segments, the receiving TCP is required
to inform the sending TCP that it has successfully received these segments. This is
accomplished by sending ACKnowledge segments whose Acknowledgement Number field
indicates the Sequence Number of the last byte successfully received. This permits the
sending TCP to continue sending segments unabated. Should a segment not be acknowledged
by the peer in a timely fashion (due to some error or other damnable event), the sending
TCP will take note and resend this segment. Upon receiving an “ACK” segment from the
peer, the previously transmitted segments sitting on the XmitQList queue are checked
against the received Acknowledgement number to determine whether this ACK affects
them. If it does, they are removed and returned to the XmitQFreeList queue, making them
available for reuse. If it does not, they remain on the queue until they are acknowledged, or
they timeout and are resent.

14

In the event that all segments have been allocated and yet more application data remains to
be sent, TCP must wait for the peer to ACKnowledge all/any of the previously sent
segments. During this time, TCP updates the SegTimer fields of the segments awaiting
ACKnowledgement. Should a segment timeout it will be retransmitted. Should it timeout a
second time TCP will infer that an error of some sort has occurred at the peer, and will
issue a RESET segment. After sending the reset segment, TCP will revert to the listening
state and attempt to send the entire data again. The timeout values used are fully flexible
and determined by macros in the TCP header file.

4. Transmitting Data.

An application wishing to transmit data must first determine whether TCP is available by
checking the TCP_SEND flag. If TCP is available, the application must fill in the necessary
fields in TCP’s API (indicating for instance, the location(s) of the data buffers to transmit),
and then set the TCP_SEND flag. When the TCP task next runs, it will check for any
commands from the application(s). Upon noting that the TCP_SEND flag is set, TCP will:

1. Use the *Socket (connection name) field to determine which TCP Control Block to

access…
2. Determine whether the total data length exceeds that of the peer’s Maximum

Segment Size (MSS). If it does exceed this limit, TCP will grab a “MSS-sized”
portion of the data, to ensure that the receiving TCP can handle the segment…

3. Acquire a TCP segment (if one is available) from the TCP segment manager, who
places the segment in the XmitQList. If no segments are available, TCP must wait…

4. Compute the total segment length and record this number in the Length field…
5. Transcribe the current Sequence numbers from the socket’s control structure…
6. Compute the segment checksum and record it in the HdCkSum field…
7. Record the segment’s timeout value in its SegTimer field…
8. Copy the appropriate buffer addresses to the pointers in IP’s API …
9. Determine whether this is the final segment to send. If so, set the FIN flag in the

TCP segment header. Otherwise, only the PSH and ACK flags are set…
10. After ensuring that IP is available (by checking IP’s DLSEND flag), signal the IP

layer to transmit this segment by setting the DLSEND flag in IP’s API …
11. Repeat steps two through nine above until all application data has been sent.
12. Once all application data has been transmitted, TCP will await ACKnowledgement of

the FIN segment, as well as any other un-ACK’d segments…
13. Upon receiving proper ACKnowledgements, the connection is closed.

This process is illustrated in Figure 10. The application (HTTP in this case) collects the
various data and passes the relevant parameters on to TCP.

5. Receiving Data.

TCP monitors the DLRECV flag in the Cmd field of IP’s API data structure for received
segments. Upon receiving a segment from IP, TCP will:

15

1. Confirm the segment’s checksum. If incorrect, the segment is silently discarded (i.e.
ignored)…

2. Compute the payload length (application data) for use by the application …
3. Copy the protocol number to the API for multiplexing purposes…
4. Flag the Application layer(s) that data has been received…
5. Delay itself by one tick to allow the application layer protocol(s) to run.

IP’s “API”

Segment
Header

Segment
 Pseudo Header
(not transmitted)

HTTP Header (RAM)

Embedded Web
page (FLASH)

"HTTP/1.0 200 OK\r\n”
"Content-Type: text/html\r\n”
”Content-Length: ";

const UCHAR CBall_htm[] =
"\r\n\r\n<html>"
"\r\n<head><title>About the
CB</title>”
...
"\r\n</html>\r\n\r\n";

PSEUDO_T PSEUDO_T TPTxPHdTPTxPHd {...} {...}
TCP_T TCPTxSeg {...}

IPAPI_T TNetIface {…}

IP

TCP

TCPAPI_T TCPapi {…}

HTTP

(TCP’s API)

Figure 10. Application/TCP interlayer communication

B. The Transport Layer – UDP

UDP is supported to facilitate limited NetBIOS, DNS, and WINS services. These applications
use UDP to send and receive service requests and responses. The User Datagram Protocol is
significantly simpler than its big brother TCP. In contrast, UDP is by definition a
“connectionless” transport protocol. This means that UDP establishes no connection with the
peer prior to sending or receiving datagrams, and that no state information is maintained to
ensure reliable delivery of these datagrams. The UDP layer interfaces with applications in a
manner similar to TCP. Its API is defined in Figure 11.

typedef struct udpapi_t{
 UWORD LocPort; /* Our Port number */
 UWORD ForPort; /* Peer’s Port number */
 QUADB_T LocIP; /* Structure holding local and Dest IP */
 QUADB_T ForIP; /* addresses */
 UWORD Cmd; /* Application Command */

16

 UWORD Status; /* Holds the Status of the UDP */
 UBYTE *RxBuf; /* Pointers to the Rx and Tx buffers */
 UWORD RxCount; /* Number of bytes recd */
 UWORD RxBufLen; /* Rx buffer length */
 UBYTE *TxBuf; /* Pointer to data to send */
 UWORD TxCount; /* Number of bytes to xmit */
 const UBYTE *html; /* Points to any const data to xmit */
 UWORD HtmLen; /* Number of bytes in HTML page */

} UDPAPI_T;

Figure 11 - UDP’s API structure

Where these are the command semaphores…

#define UDP_RECV BIT1
#define UDP_SEND BIT5

C. The Network Layer (IP)

The IP layer interfaces with Transport protocols sitting above it, such as TCP and UDP (and
logically ICMP), and Data link protocols sitting below it, such as SLIP, PPP, and Ethernet. The
Transport layer interfaces with the IP layer by way of two data structures:

1. IPAPI_T holds the command from the Transport layer, as well as several pointers necessary to

locate the various data.

typedef struct ipapi_t {
 UBYTE Cmd; // Command flags from Transport layer
 UBYTE RxProtoc; // Protocol number of Rx datagram
 UBYTE TxProtoc; // Protocol number of Tx datagram
 UBYTE TTL; // Time To Live value
 QUADB_T ForIP; // Source and Dest IP ddresses
 QUADB_T LocIP;
 UBYTE *RxBuf; // Pointers to the Rx and Tx buffers
 UWORD RxCount; // Number of bytes recd
 UWORD RxBufLen; // Rx buffer
 UBYTE *TxBuf; // Pointer to RAM-based Tx data
 UWORD TxCount; // RAM-based data length
 const UBYTE *html; // Pointer to ROM-based Tx data (HTML page?)
 UWORD HtmLen; // ROM-based data length
 TCP_T *TCPTxSeg; // Pointer to TCP Tx segment header
 TCP_T *TCPRxSeg; // Pointer to TCP Rx segment
 UDP_T *UDPTxSeg; // Pointer to UDP Tx segment header
 UDP_T *UDPRxSeg; // Pointer to UDP Rx segment header
 ICMP_T *ICMPTxSeg; // Pointer to ICMP Tx segment header
 ICMP_T *ICMPRxSeg; // Pointer to ICMP Rx segment header
}IPAPI_T;

Figure 12. IP’s API structure

IP responds to the following commands...

17

#define IPSEND BIT0
#define IPRECV BIT1

2. IPv4_T holds the IP header information.

typedef struct ipv4_t{
 UBYTE Ver_HL; // Version and Header length byte
 UBYTE ToS; // Type Of Service
 UWORD Length; // Total datagram length
 UWORD Ident; // Fragment Identification field
 UBYTE FlgsOffst; // Flags and MS offset bits
 UBYTE Offst; // LS offset bits
 UBYTE TTLive; // Time-To-Live byte
 UBYTE Protocol; // Transport Protocol byte
 UWORD HdCkSum; // One's compliment header checksum
 QUADB_T SrcIP; // Source IP address
 QUADB_T DestIP; // Destination IP address

} IPv4_T;

Figure 13. IP’s Header structure

Two IPv4_T structures are created during initialization – one for transmit and one for receive.
Operation is straightforward: the flags IPSEND and IPRECV are monitored for input from TCP,
while also monitoring the flags DLRECV and DLSEND for the Link layer. When a segment is readied
to send by TCP (IPSEND flag is set), IP will:

1. Compute the total datagram length and record this number in the Length field…
2. Compute the header checksum and record it in the HdCkSum field…
3. Flag the Link layer by setting the DLSEND flag in DLAPI_T to send the datagram.

Upon receiving a datagram from the Link layer (DLRECV flag set), IP will:

1. Confirm that the header checksum is correct. If incorrect, the datagram is ignored…
2. Compute the TCP segment length for use by the Transport layer (TCP or UDP), or ICMP
3. Copy the protocol number for multiplexing…
4. Flag the appropriate layer (Transport or ICMP) that a datagram has been received.

NOTE: This IP does not currently support fragmentation.

D. ICMP (Internet Control Message Protocol)

ICMP (Internet Control Message Protocol) is a required and integral part of IP, although it logically
sits above it. ICMP messages are transmitted in IP datagrams just like TCP and UDP messages. All
IP’s are required to implement certain minimum ICMP features. This implementation supports the
following ICMP message types:

• 8 - Echo Request (used by ping)
• 10 - Router Solicitation

18

To facilitate future expansion, ICMP functions are conveniently tabulated as shown in Figure 15.
Every host MUST implement an ICMP Echo server function that receives Echo Requests and sends
matching Echo Replies. The IP source address in an ICMP Echo Reply MUST be the same as the
specified destination address (defined in Section 3.2.1.3) of the corresponding ICMP Echo Request
message.

Router Solicitations received are responded to by advertising an appropriate Router IP address.
This router address will be based upon the same class B network address of the requester.
Although not necessary for most applications, this feature is included for the potential uses it may
find by our audience.

UWORD (*const ICMP_Table[])(void*, void*, void*) = {ICMPEchoReply,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 ICMPEchoReq,
 NULL,

 ICMPRouterSlct};

Figure 15. Array (Table) of supported ICMP message types

E. Data Link Layer (SLIP/PPP)

This version of the stack includes support for the Serial Line Interface Protocol (SLIP). SLIP
is a very simple protocol used primarily for its quick and easy implementation. One major
drawback associated with SLIP is its lack of any accommodation for software flow control
(ASCII control characters XON and XOFF). RAM is a precious and limited resource in most
embedded controllers, and the Cannonball is no exception. The lack of flow control requires
that we maintain a sufficiently large Rx buffer to prevent unexpected overflows.

Subsequent versions will include support for the Point-to-Point Protocol (PPP). PPP affords the
user with flow control by what is termed “transparency”. Transparency allows one to utilize
standard ASCII control characters by “escaping”, or, encoding them. This, and various other
PPP options, is configured at the beginning of the PPP connection using the Link Control Protocol
(LCP).

typedef struct dlapi_t{ // Common Data Link Layer API
 UBYTE Cmd;
 TCP_T *TCPTxSeg; // Pointer to TCP Tx segment
 TCP_T *TCPRxSeg; // Pointer to TCP Rx segment
 UDP_T *UDPTxSeg; // Pointer to UDP Tx segment
 UDP_T *UDPRxSeg; // Pointer to UDP Rx segment
 ICMP_T *ICMPTxSeg; // Pointer to ICMP Tx segment
 ICMP_T *ICMPRxSeg; // Pointer to ICMP Rx segment
 IPv4_T *IPTxDatagram; // Pointer to IP Tx Header

19

 IPv4_T *IPRxDatagram; // Pointer to IP Rx Header
 UBYTE *RxBuf; // Pointers to the Rx and Tx buffers
 UWORD RxCount; // Number of bytes recd
 UWORD RxBufLen; // Rx buffer length
 UBYTE *TxBuf; // Points to RAM buffer for dynamic data
 UWORD TxCount; // Number of bytes to xmit
 const UBYTE *html; // Points to ROM-based data
 UWORD HtmLen; // Number of bytes in HTML page

}DLAPI_T;

Figure 14. Data Link API structure

SLIP responds to the following commands...

#define DLSEND BIT0
#define DLRECV BIT1
#define ENDRECD BIT7

Figure 15 represents a schematic of the IP-Data Link interface.

IP’s Tx and Rx datagrams

SLIPTx SLIPTx

IPv4_T IPTxdatagram {…} IPv4_T IPRxdatagram {…}

IP

DLAPI_T TNetIface {…}SLIP’s “API”

Transmit
circular
buffer

Receive
circular
buffer

Figure 15. IP/Data Link Interface.

20

F. The Application Layer (HTTP 1.0)

A limited version of HTTP 1.0 is included. The supported methods (or, commands) are GET and
POST - all others are ignored. A schematic of this layer is shown in Figure 16. This HTTP can
operate with both static (FLASH-based) and dynamic (RAM/EE-base) user defined pages.

const UCHAR Pagel_htm[] =
"\r\n\r\n<html>"
"\r\n<head><title>About the
CB</title>”
...
"\r\n</html>\r\n\r\n";

const UCHAR Clockl_htm[]
=
"\r\n\r\n<html>"
"\r\n<head><title>About the
CB</title>”
...
"\r\n</html>\r\n\r\n";

const UCHAR Test_htm[] =
"\r\n\r\n<html>"
"\r\n<head><title>About the
CB</title>”
...
"\r\n</html>\r\n\r\n";

OSTaskCreate (TaskA, ...)

User defined html pages (FLASH)

User defined tasks

UCHAR HTTPTxBuf [HTTPTxBufSize];

UCHAR HTTPRxBuf [MaxSS-24];

HTTP

TCP

TCAPI_T TAppIface {...}

TCP’s “API”

User defined Rx and Tx buffers

const UCHAR CBall_htm[] =
"\r\n\r\n<html>"
"\r\n<head><title>About the
CB</title>”
...
"\r\n</html>\r\n\r\n";

OSTaskDelete (TaskX;...)

TP
B_

T
 T

as
kn

TP
B

TaskA (void *data)
{
 while (1) {
 do this;
 do that;
 do the other thing;
 }
}

TP
B_

T
 T

as
kC

TP
B

TaskA (void *data)
{
 while (1) {
 do this;
 do that;
 do the other thing;
 }
}

TP
B_

T
 T

as
kB

TP
B

TaskB (void *data)
{
 while (1) {
 do this;
 do that;
 do the other thing;
 }
}

TP
B_

T
 T

as
kA

TP
B

TaskA (void *data)
{
 while (1) {
 do this;
 do that;
 do the other thing;
 }
}

Figure 16. Application Layer (HTTP) schematic

In addition to simply returning static Web pages, this server is capable of responding to forms.
Similar in function to cgi’s, the user may define application-specific “scripts” (tasks) which may
be spawned by the Server to perform user-specified functions. As the user “submits” form
data to the server, these user-defined tasks operate on this data and return results or take
user-specified actions. These tasks may, or may not, return a new or modified Web page.
These built-in features provide a user with a great deal of flexibility in creating fully
interactive applications.

User tasks are written to operate under the RTOS. Special control blocks and data structures
are used to manage all this activity. These are defined and maintained in a central location,
making development a straightforward process. Users may create their own embedded Web
pages in a number of ways. One easy method is to first write them in standard HTML and then
add the necessary formatting to transform them into an array of characters, making them
amenable to the ‘C’ compiler. Once understood, this process is remarkably quick and easy.

This server was developed with efficiency in mind. To that end, Web pages may share common
headers and footers, thereby giving them a uniform look and feel. Alternatively, users may opt

21

to adopt a monolithic style. Both are supported in this server. Moreover, Web pages may
include provision for dynamic data – i.e. data returned by one of the user-specific tasks may be
inserted into the page by the server prior to transmission. To support this feature, all
embedded pages follow a defined format, and predefined constructs are utilized to organize
and manage the transmission of each page.

Formatting your own embedded html page proceeds as follows:

1. Web pages may comprise one or more discrete sections, each of which will assume the form

of a array of characters. Sections should be given a common logical name, similar to that of
Figure 17.

2. Begin the page with 2 (two) CR/LF (\r\n) sequences. (The user-defined portion is the HTTP
“entity body”. The body follows the HTTP header, and must be delimited by 2 carriage
return/line feed sequences.)

3. You may optionally begin each line with a CR/LF sequence (\r\n) to make the browser’s
“source view” easier to read (these may be omitted to save space).

4. Escape any “C” specific characters (such as quotes or percentage signs). For example, any
quotation marks within your html code must be replaced with \”.

5. Delimit each line with quotes to form one string literal.
6. Terminate each array (one or more) with a semicolon as per “C” coding requirements.

As a simple example, consider the following html listing using the above approach. Figure 21
shows just how Internet Explorer renders this very short section of embedded html code.

const UBYTE err504_htm[] =
"\r\n\r\n<HTML><HEAD>"
"\r\n<TITLE>HTTP 504</TITLE>"
"\r\n</HEAD>";

const UBYTE err504_htm2[] =
"<BODY><H1>HTTP Error 504 - Remote Node Error</H1>"
"\r\nNode ";

const UBYTE err504_htm3[] =
" responded with error: ";

const UBYTE err504_htm4[] =
"\r\n<P><HR><ADDRESS>Jeffs/1.3.9 Server at www.cr16.com "
"\r\n Port 80</ADDRESS>"
"\r\n<p>HomePage"
"\r\n</BODY></HTML>";

Figure 17. Simple embedded page.

7. Once your page is written, you now insert pointers to the page’s addresse(s) and other
pertinent parameters into a control structure as defined in Figure 18. (See Figure 19 for
this page’s data structure.)

8. Finally, you must give your page an Identifier and insert it into the list of pages as shown in
Figure 20. This is simply the name you wish to use for the object. HTTP resources are
commonly identified by what they call a URI, or Uniform Resource Identifier. For example,

22

assuming as your domain www.yourserver.com, this object would assume a URI something
like www.yourserver.com/err504.htm.

typedef const struct html_t {
 TPB_T *const tpb; // Pointer to task’s Task Parameter Block
 const UWORD NumBlocks; // Number of discrete blocks in this page

 // Pointer to array of page pointers
 const UBYTE *const (*BlkAddrs)[];
 UWORD const (*BlkSz)[]; // Pointer to array of page sizes
 UWORD const PageSize; // Total page size in bytes
}HTML_T;

Figure 18. HTML control structure.

const UBYTE *const err504Ptrs[] = {err504_htm,
 err504_htm2,
 err504_htm3,
 err504_htm4};

const UWORD err504Szs[] = {sizeof (err504_htm) - 1,
 sizeof (err504_htm2) - 1,
 sizeof (err504_htm3) - 1,
 sizeof (err504_htm4) - 1};

HTML_T err504_html = {&HTTP504TPB,
 4,

 &err504Ptrs,
 &err504Szs,
 sizeof (err504_htm)
 + sizeof (err504_htm2)
 + sizeof (err504_htm3)
 + sizeof (err504_htm4) - 4};

Figure 19. 504 Page’s HTML control structures.

const UCHAR err504Name[] = "/err504.htm";

const UCHAR *const PageNamePtrs[] = {IndexName,
 err504Name,
 .,

 .,
 .,

 NULL};

Figure 20. List of embedded objects (pages).

23

Figure 21. 504 Page as Rendered with Internet Explorer.

G. Naming Services (WINS/DNS)

Some aspects of both WINS and DNS are supported to allow the use of url based resource
addressing, and to respond to NetBIOS name registration requests. Included primarily as a
development tool, these services may find use in actual applications. Both WINS and DNS use UDP
as a transport layer. This implementation currently supports only those features necessary to
resolve urls into IP addresses, and vice versa. This implementation also supports the following
Windows-based network tools:

• Tracert – determines and lists the route taken to a destination by sending ICMP echo requests

with varying TTL (Time-To-Live) values to the destination. One may specify either an IP
address or a URL as the destination. This implementation currently resolves all IP addresses to
the cannonball.com. Conversely, urls are resolved into Ipv4 addresses.

• Route – displays current routing table.

In a manner similar to ICMP, provision is made for easy expansion by defining an array of supported
functions. Each request “type” is used as an offset into these tables. Non-supported types are
given NULL pointers.

24

UWORD (*const DNS_Table[])(UBYTE *, UBYTE *, UWORD) = {DNSQuery,

 DNSIquery,
 DNSCquery};

UWORD (*const WINS_Table[])(UBYTE *, UBYTE *, UWORD) = {WINSQuery,
 WINSIquery,
 WINSCquery,
 NULL,
 NULL,
 WINSRquery};

Figure 22. Arrays (Tables) of supported DNS and WINS functions (msg types)

25

III. A CR16-based Embedded Web Server Demo

As a simple example of the many potential uses for such an embedded server, a demonstration
system was constructed as illustrated in Figure 24. The system comprises several CannonBall
evaluation boards all networked over CAN. One board assumes the role of a gateway from the
TCP/IP spoken by the PC, to the CAN spoken by the network. Each node’s peripherals may be
controlled and accessed from a standard Web browser such as Netscape or Internet Explorer.

As Figure 24 indicates, every node may be configured to run a variety of tasks. Nodes operate in a
manner similar to that illustrated in Figure 16. The HTTP Web server present on the gateway is
replaced by a “high-level” CAN driver in the nodes. This CAN driver is responsible for interpreting
browser requests and spawning any required tasks, as well as formatting task results for
transmission over the CAN bus. At the gateway, the high-level CAN driver maintains a list of active
nodes and their respective configurations. This allows the user to remotely manage nodes from a
single control point. Figure 25 is a sample page from the project (as rendered by IE 5.0). You’ll
notice that the page includes several gif images. These were included to enhance the look of the
pages, and were located on the PC’s hard drive. All other html code is embedded within the FLASH
memory of the CannonBall.

Client Browser

Dial- up Connection

Motor Control

... All work and no play
makes Jeff a dull boy

LCD Interface

Temperature
 Sensor

ΤΤΤΤ

Keyboard
Interface

LED’s

9-12 Vdc

RS232

CAN 2.0B

PC
-1

04
Ex

pa
ns

io
n

CR16M
CS9

LED’s

9-12 V
dc

R
S232

C
A

N
 2.0B

PC-104
Expansion

CR16M
CS9

LED’s

9-12 V
dc

R
S232

C
A

N
 2.0B PC-104

Expansion

CR16M
CS9

LED’s

9-12 V
dc

R
S232

C
A

N
 2.0B

PC-104
Expansion

CAN Bus

CR16MCS9

M

Figure 24. Embedded Web Server Demo system

26

Modeled after the Dynamic Host Configuration Protocol (DHCP) used by PC’s to dynamically acquire
its network configuration, a similar mechanism is employed to allow nodes to acquire certain needed
network configuration data automatically. Using what we refer to as “Dynamic Node Configuration”
(DNC), nodes may be added and deleted in a manner similar to the plug-and-play mechanism used in
your PC. As a node is added, it issues a DNC request to the DNC server (located on the gateway),
advertising it’s randomly generated ID. The gateway’s DNC server layer will then assign a new node
number for this node and add it to its list of active nodes. If space is available, and the ID
requested by the node is valid, DNC will acknowledge the request with a confirmation. Subsequent
communications directed at that node will use the negotiated ID. Figure 26 illustrates this table
after adding the first node. The number of nodes used in the demonstration was four, however,
the only real limitation to the number of nodes that may be added is that of the size of the EE,
where this node configuration table is kept.

Figure 25. An Embedded Motor Control Page from the Project

27

Figure 26. Node Configuration Table.

III. This Implementation’s Compliance with the TCP Specification

RFC 1122 augments and obsoletes the original TCP, UDP, and IP specifications (RFC’s 793, 768,
and 791), by summarizing requirements and correcting various errors and shortcomings
detected over the years. It conveniently delineates those portions of the specification that
MUST or SHOULD be implemented in order to be in compliance (see Appendices A and B).
Many of these features are wholly, or in part unnecessary in a controlled, embedded
environment. As a result, some of these requirements are not implemented. In the following
paragraphs We’ll briefly touch on a few of the more important of these MUST’s and SHOULD’s,
and just what is and isn’t included in this stack - and whether it matters. You will note that
many of the features listed are supported, but not in a comprehensive manner. Doing so would
result in a prohibitively large and resource hungry implementation, ill suited for most
microcontrollers. If full compliance is required, third-party software and widgets are available
in abundance.

• Window Management

28

Limited memory space does not permit the queuing of received segments, and so our window size
is effectively one segment. However, since we expend every effort to keep pace with the
incoming data, we advertise a larger window size, and never adjust it. This effectively
precludes a window going silly on us. On the receive side, TCP checks the peer’s window size
before transmitting data. Should the peer’s window be too small, TCP will delay transmissions
until such time that the peer’s window opens.

• Support for the “zero window probe”

This is another tool utilized to augment the sliding window flow control mechanism. If we are
currently sending data to a peer and the peer advertises a window size of zero (for some reason
it cannot currently accept any more data), we should periodically transmit probe segments to
discover if the connection is still viable or has been prematurely aborted. If zero window
probing is not supported, the connection may hang forever in the unfortunate event that the
peer’s ACK segment that re-opens the window is lost (not an improbable event).

This implementation does not queue received segments. Rather, upon reception every segment
is immediately passed to the Application. We therefore never advertise a Window size of zero.
Probe segments, if received are ignored. If the peer advertises a zero window, data
transmission is suspended. However, if the window remains closed beyond the segment timeout
intervals, a reset will be issued.

• Support for Timeout with Retransmission

Integral to TCP is the retransmission of segments that have not been Acknowledged (ACK’d) in
a timely fashion. The RFC mandates the implementation of an algorithm developed by Jacobson
for computing the smoothed round-trip-time (RTT), and an algorithm by Karn for computing the
retransmission timeout ("RTO"). Additionally, all implementations must include exponential
back off for successive RTO values for the same segment.

Sorry - this implementation deals with retransmission in a slightly less expensive fashion. Each
transmitted segment is “queued”. Actually, the segment data itself is not queued, since this
would require enormous amounts of RAM. Only the segment’s relevant parameters are queued.
This allows for many more segments than the limited RAM would otherwise allow. Upon
creation, each segment is “timestamped” with the current OS time. When the TCP has sent all
available segments, it periodically updates and checks the timer field of every “unACK’d”
segment on the queue. If any or all of the queued segments awaiting acknowledgment timeout,
they will be retransmitted. If a segment times out a second time, a reset is sent to the peer
and the TCP closes.

The RFC does briefly mention the fact that in small-host implementations (such as ours),
segment queuing is often precluded due to limited buffer space. They remind us that this
omission may be expected to adversely affect TCP throughput, since the loss of a single
segment causes all later segments to appear to be "out of sequence". Noted.

• Generating Acknowledgments

29

TCP requires that all queued data be processed before sending an ACK. Furthermore, if
aggregate acknowledgement is implemented, the ACK interval may not exceed 0.5 seconds.

Since segments are not queued, segments are individually acknowledged. Maximum ACK delay is
less than 0.5 seconds.

• Support for Urgent Data

Although the Urgent mechanism may be used in any application, it was originally used to send
interrupt - type commands to a Telnet program. We ignore the Urgent flag and never set it in
outgoing segments.

• TCP Options

All TCP’s are required to be capable of receiving TCP options attached to any segment. In
addition, all TCP’s MUST ignore without error any TCP option it does not implement, and it
MUST be prepared to handle an illegal option length (e.g., zero) without crashing or other
undesirable activity. TCP mandates a default MSS value of 536 bytes in the event one side
does not advertise to the contrary. Support for the Maximum Segment Size option is important
because it permits limited RAM applications (i.e. most low-cost embedded apps) to limit the size
of the incoming segments to one commensurate with its smaller buffers. If a MSS option is not
received at connection setup, TCP MUST assume a default send MSS of 536 (576-40).

We recognize and apply the peer’s MSS. All other TCP options, though received, are ignored.

• TCP Checksums

TCP requires that the sender compute a checksum for every segment sent, and requires that
the receiver confirm the checksum on all incoming segments. Some implementations ignore the
checksum on received segments since PPP provides ample protection via its CRC. However, since
TCP may not always run over PPP (it may run over SLIP, for instance), support for the checksum
must be included even if it can be optionally omitted.

Our implementation complies by allowing the user to optionally include the TCP checksum. Any
received segments failing the checksum test are silently discarded. In the event a segment
does fail the checksum, no acknowledgement is sent. The sending peer is expected to
retransmit the segment after an appropriate timeout.

• Use clock-driven Initial Sequence Number (ISN) selection

TCP dictates that the Initial Sequence Number be generated by a 32-bit clock running at
250Khz. This is to guard against overlapping segments between two peers that may reestablish

30

a connection after a previous one was prematurely aborted. Our ISN is based on the 32-bit
time-base used by the RTOS, but operates at the system tick rate, which may be anywhere
from 20Hz to 200Hz. Although posing no realistic threat in most/all embedded environments,
this feature may easily be amended to comply fully with the RFC, should it be deemed necessary
in any specific application.

• Use of the push flag

TCP requires that if the implementation does not allow the Application to control the Push flag,
it MUST be set by TCP in the final segment at a minimum.
This implementation does not afford the application with control of this flag; TCP sets the Push
flag in the final segment of every transmission.

IV. Compliance with the IP Specification

As with TCP, RFC 1122 additionally supplements the original IP specification (RFC-791), by
summarizing requirements and correcting various errors and shortcomings detected over the
years. It conveniently lists those portions of the specification that MUST or SHOULD be
implemented in order to be in compliance (see Appendix B). Only a few of these features are
really necessary in a controlled, embedded environment (such as ours) and are consequently
omitted in whole or in part from this, as well as many 3rd party stacks. A few of the more
common of these features are briefly discussed in the following paragraphs, and just what is
and isn’t included in this stack - and whether it matters.

• IP Version Number:

Currently, only Version 4 (Ipv4) type datagrams are supported. Support for IPv6 is TBD. If
any other version number appears in the header of a received datagram, it is noisily discarded.

• Checksum:

A host MUST verify the IP header checksum on every received datagram and silently discard
those datagrams that fail the test. As in the case of the TCP checksum, many stacks omit this
computation since the CRC performed by PPP is more than adequate. However, if used over
SLIP or another Link layer protocol that does no such error checking, the checksum is
necessary. For this reason, it is optionally included in the IP layer.

• IP Fragmentation and Reassembly:

This IP does not support any form of fragmentation. Path discovery mechanisms are
encouraged to preclude fragmentation. In our case, the MSS is determined at compile time,
and is, for all practical purposes, equivalent to the MTU. This IP will never attempt to fragment
a segment. On a dial-up connection, the MTU is essentially irrelevant. PPP does impose an
arbitrary MTU of 1500 bytes, presumably to mimic that of Ethernet. Since our TCP advertises

31

its MSS, the peer should never decide to fragment a segment. This IP does not examine the
More Fragments (MF) bit. Should a datagram be received with this bit set, this IP will not
treat it any differently that any other datagram. This will eventually lead to checksum errors.

• IP Options

IP defines several options, many or most of which never find any real use in common
applications, let alone an embedded one. These Options provide IP with useful control functions
needed in some situations, but for the most part, are simply not implemented in many stacks.
Options include - provisions for timestamps, security, and special routing.

No IP options are supported in this stack, although provision is made to receive them. If
received they are ignored.

• ICMP

ICMP (Internet Control Message Protocol) was defined to be integral to IP, although logically it
sits above it. What that means is that ICMP messages are transmitted in IP datagrams just
like TCP and UDP messages. Nonetheless, ICMP is technically part of IP and all IP’s are
required to implement certain of its features. ICMP messages are grouped into two classes:

1. Error messages:

• Destination Unreachable
• Redirect
• Source Quench
• Time Exceeded
• Parameter Problem

2. Query messages:
• Echo
• Information
• Timestamp
• Address Mask

• 3.2.2.6 Echo Request/Reply:

Every host MUST implement an ICMP Echo server function that receives Echo Requests and
sends matching Echo Replies. The IP source address in an ICMP Echo Reply MUST be the same
as the specific-destination address (defined in Section 3.2.1.3) of the corresponding ICMP Echo
Request message.

	Particulars of this Implementation
	The Transport Layer – TCP
	Figure 8 - TCP Socket List
	Figure 10. Application/TCP interlayer communication
	The Transport Layer – UDP

	Figure 15. Array (Table) of supported ICMP message types
	Figure 15. IP/Data Link Interface.
	
	
	
	
	
	Naming Services (WINS/DNS)
	A CR16-based Embedded Web Server Demo

	This Implementation’s Compliance with the TCP Specification
	Compliance with the IP Specification

